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Abstract
The study aims to study Gateaux differentiability of the functional ¢(w, ®)(f) = fooo. @(f*)w and of the
Luxemburg norm, it follows the descriptive method and the study found that we can obtain the one-sided
Gateaux derivatives in both cases by characterizing those points where the Gateaux derivative of the norm
exists,we obtain a characterization of best ¢, g-approximants from convex closed subsets, there a relation
between best ¢, s-approximants and best approximants from a convex set.
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1.Introduction
Let M, be the class of all real extended ¢-measurable functions on[ 0, «),0 < @ < oo, where is the Lebesgue
measure. As usual, for f € Mywe denote its distribution function by .r) = u({0 < x < a:[f(x)| >

N}H (2 = 0), and its decreasing rearrangement by
f*(1+ 2¢) =inf {.Q:uf(ﬁ) <1+ 26} (e > _71)

If two functions f and g have the same distribution functions we say they are equimeasurable and we denote
itby f~g.
Foryo{hefproperties of ug and £, (see [1] Bennet and Sharpley, 1988,pp.36-42).

Let @: R, — R, be differentiable, convex , @(0) = 0,0(1 + 2¢) >0 fore > _71 and let

w : (0,a) = (0,00) be aweight function, non-increasing and locally integrable.

If & = oo,we assume w(1 + 2€) = 0 and [, w(1 + 2€)du(1 + 2€) = o,
For f € My let g, 5 (f) = [ @ @(F*(1 + 2€))w(1 + 2€) du(1 + 2€)
In ([4] Hudzik, Kaminska an Mastylo,2002 and [6] Kaminska,1990 -[8] Kaminska,1991), several authors
studied geometric properties of the regular Orlicz-Lorentz spaces,{f € My: ¢ (Af) < oo for some 2 >
0}.The main ojective of this section is to study differentiability properties in the following subspace

Ayg = {f € My: 9 5(02f) < oo for all 2 > O},

which appears to be convenient for our purpose. Under the norm given by

Il =inf inf {e> 0:040 (L) <1},

.®.¢1s a Banach space ([6] Kaminska,1990).1It is clear that if w is constant, A, 5 becomes a subspace of

finite elements Ly of the Orlicz space Ly (see [15] Rao and Ren, 1991). On the other hand setting

P(1+2€) = (1+ 2€)'™¢,0 < € < o0, we obtain the Lorentz space L, 1+¢)and

Vus(f)=If ||%;j +¢)- These weighted Lorentz spaces as a generalization of Lorentz space have been
1+€

1-€

studied in ([3] Halperin, 1953). If w(1 + 2¢) = (E) 1+ 26)(m)_1,0 < —e < € < o, a good reference
for a description of these spaces in L(1 + ¢,1 — €) spaces in ([5] Hunt, 1966).A function o: [0, @) — [0,
a)is called a measure preserving transformation (m.p.t) if for each u-measurable set I c [0, a),o (1) is u-
measurable and (0‘1(1)) = u(I). Itis very important to emphasize that any m.p.t induces equimeasurability,
that is, if
g € Mythen|g| o o is a p-measurable function on[0,@)and |g|e° o~|g|.For g € My,we denote (g) =
{0 < x < a:g(x) # 0} .In view of the assumptions on the weight w, if
f € Ayg, then f*(1 + 2e) = 0.In consequence,by Ryff's Theorem (see [1] Bennet and Sharpley, 1988)
thereisan m.p.t a: (f) — (f™) such that

Ifl = ffeo p—a.e on(f)(1.1)

Moreover, if a: (f) — (f*) isany m.p.t fulfilling (1.1), then
Pop(f) = f Puwg--D(fDdp.
0]

In fact, since @(f* )w~0(|f|)w(o), so their integrals are equal (see [1] Bennet and Sharpley, 1988).Let
T: A, — R be a functional.For f,h € A, 4 We will use in this work the one-sided Gateaux derivatives

vi(fi) = LD ang
v7(f,h) = Tr+h-29)-1¢) (see [2] Carothers, Haydon and Lin,1993) showed that if a = o0, @(1 +

1-2¢
2¢) = (1 + 2e)'*¢, 0< e <, and w is astrictly decreasing function, then

(f ) = A +6) [ w(tpn)lfI€( — 26)g(f)h dp, where () is defined by
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(7r0) ) = ur(AF D + u({y: 1fF ) = If () land h(y)(1 — 26)g(f () > h(x) (1 — 2e)g(f (x))})
+u({y: 1If ) = 1f LR - 26)g(f (1)) = h(x) (1 - 26)g(f(x))and y
<x}). (1.2)

It is known that ¢ pis an m.p.tand |f| = f* o 7, u-a.e. on (f) (see [16] Ryff, 1970).

In one sided Gateaux derivatives in 4, 4, we generalize this result .Using atechnique similar to that in ([10]
Levis and Cuenya,2004,Theorem 2.6), we compute the one-sided Gateaux derivative of the modular for 0 <
a < oo, w a non-increasing function, and @, a convex function.Here,we need to work with a suitable m.p.t.
.Also, we obtain the one-sided Gateaux derivative for the norm || - || ., 4, called also the Luxemburg norm.
We say that f € 4, ¢ is a smooth point for T if there exists the Gateaux derivative of the functional T in f,
i.e if y7(f,h) = yz (f, h) for all h € A, sand we denote it by y;(f, h).The set of smooth points for the
functional ¢, 4 was investigated in ([10] Levis and Cuenya,2004).

Let K c A, g and f € A, ¢ be given, and considerthe problem of finding h* € K such that

T(f —h*) ==:Er (f,K). (1.3)

Denote by Pr(f, K) the set of all h* € K fulfilling (1.3). Each element of P (f, K) will be called the best T-
approximant of f from K. If T is the Luxemburg norm, we only say the best approximant from K. Let ¢ =
1, let B(1+2€) = (1+2e)!*€with 0 <e < oo, let f be a simple function in 4,4, and let K :=
{g € Aygp:gis constant}.ln ([11] Levis and Cuenya,2004), we give a characterization of the best, ¢, ¢-
approximants of f from K and we show the way to obtain the best ¢, z-approximants maximum and
minimum, which will be denoted by f and f respectively.We give a characterization of the best ¢, ¢-
approximants of f € A, 4 from a convex closed set, K, and we establish a relation between the best ¢, 4-
approximants and the best approximants from K .Finally, we give a characterization of the best constant ¢, 4-
approximants and we calculate the best constant ¢, g-approximants maximum and minimum )[12] Levis
and Cuenya, 2007).

2.0ne sided Gateaux derivatives in A, 4

We let f,h € A, 4for each € > %,We consider any m.p.t.osina—2¢): (f + h(1 —2¢€)) - ((f + h(1 -
2¢))") such that

If + k(1= 26)| = (f + h(1 — 26))" 0 G4 p1_ze-2.8.(f + h(1 = 26)).

In ([10] Levis and Cuenya, 2004),we showed that of (x) = 0f4p1-26)u-a.€ ON E(f) N (f) where E(f) =
{0 <x <a:p{lfl = 1f (0} = 0}

However, we give an example which shows that this result does not hold on the whole (f) )[12] Levis and
Cuenya, 2007).

Example 2.1

1
Fora=1,letf = ZX[O%) +x 15).FOI' 5 <€e<0,

[4'4

[
we consider the m.p.t. defined by

1 1
(fh(1-20)) (¥) = (x + Z) Kok + (x - Z)X[%%) * XX Ly

and h =
2 h=x

and for % < € < 0the m.p.t. defined by

1 1
(r+ha-2e)) (¥ = XX 1, + (x * Z) Xg3 + (x - Z)X Eo.
We observe that for all 0 < x < 1,0, ,1-2¢))(x) does not exist.
Now our purpose is to define a sequence of m.p.t.os, (1-2¢),n
such that oy,.(1_2¢),n (x)exist for x € (f) U (h) .To prove it we need some auxiliary lemmas.
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Lemma 2.2
Let R c [0, @) be a u-measurable set with u(R) = b > 0.
Then o:[0,a) — [0, b)defined by o(x) = u(R n [0,x])is a non-decreasing continuous function with
o(0)=0and o(x) =b.
Lemma 2.3
Let o be the function given in Lemma 2.2.Then a: R — [0, b) is an m.p.t.We denote such ¢ by oy.
Proof. Let 0 < 2 < b. From Lemma 2.2 there exists 0 < x < a such that o( x) = 0.
We consider x, =sup sup {x:a(x) = 2}..Since,x, <a
show that {x € R:az(x) > 2} = R N (x,, a).
Letx € R be such that oz(x) > 2. If x <x, , from Lemma 2.2 oz(x) < gz(x,) =0 and this a
contradiction. Thus x € R N (x,, @).On the other hand,if
X € RN (xg,),05(x) = og(xg) =2 .If oxg(x) =0
then x,, is not the supreme and this is another contradiction.Therefore oz (x) > 2.Then

Hor () = u(R N (xg, @)). (2.1)

Now , we consider g(x) =x,0 <x < b.

From (2.1) and the continuity of o, we have p,,(2) = b —a(xy) = b — 02 = pys(2).

In consequence oz and g are equimeasurable functions. If I is any u-measurable subset of [0, b), then
g~ t(I) = I isa u-measurable set. From ([1] Bennet and Sharpley, 1988,Lemma 7.3), o * (I) is u-measurable

and u(az*(D) = u(g=*(1)) = p(I).The proof is complete.
Let f € A, g. By redefining f, if necessary, on a set of u-measure zero , we may assume that |f|and f* have
the same non-null range, say R( f).For 2 € R( f), we consider C¢(2) :== {0 < x < a:|f(x)| = 2} and
(@) ={e>Z:f (1+26) = n}. So,
u (Cf(!))) =u (If(ﬂ)) < co0. By Lemma 2.3, the function g,: C¢(2) — 1:(02)
defined by 0, (x) = us(2) + (Cf(.(z)) N [0, x] is an m.p.t .Thus, the function

07 (%) = 0p(x) (x € cf(n)) (2.2)

isan m.p.t. from (f) onto (f*).
Remark 2.4

Given f € A, we can write o7 (x) = ur(If ()D) + u({y: If W) = If ()| and y < x3). If u((f) ) < o,
then oy is an m.p.t. from [0, @) into [0, a).

Lemma 2.5

Let f,he A,p and let2>0. If pu (Cf((z)) =0 , then pusis acontinuous function at £ and
Urena-26)(2) = up(2).

Proof. Since u; is a right continuous function, it is sufficient to show that

pe(1—2€) = up(2) . Let((1 — 2€),), be a sequence such that

0<(1-2¢),T2andC, ={y:If )| > (1A —2€),}.

Clearly C,4; € C,, and u(C;) < 0.As u (Cf(ﬂ)) =0, we get

pup (1 =26)n) = u(NyZyG) = u({y: If I =2 23) = pp ().

Now we shall prove that
Using properties of the distribution function we obtain

Uren(-26)(2) = Urina-26) ((1 -1 - 26|) N+.]1- 26|.Q>

< uf ((1 —Ji= 2€|).(2) + (%Q) (2.3)
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and pr(2) < pryna—2e) (2).

Since h € A, g We have uy, (%Q) =0.

In addition ((1 ~J]1- 2e|)n> = 1 ().

So (2.3) implies that psyp1—2¢) (2) < pp(2).The proof is complete.

Remark 2.6

Let f € Ay, and 2 > 0. Clearly p ({y: ’f(y)XCfm)(y)| = [2}) = 0, where A = [0,a) - A. Thus, Lemma

2.5 implies that Hrxe @ is continuous at 2.

Lemma 2.7
Let f,h€ A,g If2>0andx € C(02),

then U+ a-zeme o (IF () + (1 = 261 = pp (2).
Proof. It is enough to operate on decreasing sequence (1 — 2¢),, which we denote by (1 — 2¢),, {
0.Since [f(x) + (1 — 2€),h ()| L2228 = oand f,h € A, 4, then

(1-26)p
Ja=2o,
(| £ + (1 = 26),h(®)] %) =0. (2.4)

In fact, (2.4) is obvious if @ < oo. For a = oo, (2.4) follows from our assumption f0°° w(l+ 2e)du(l +
2€) = oo. Using properties of the distribution function we obtain,
:u(f+(1—26)nh))(cf(m(|f(x) + (1 = 2€),h(x)])

< Bpre o (F GO + (1= 20,0 @) (1 - VT = 28),) )
v (1 - 2€)n>

(1 - 26)n

b o (If(x) + (1 —26),h(x)|

So, (2.4) implies that
'u(f+(1—2€)nh))(cf_(m(|f(x) + (1 —-2¢),,h(x)]) < ,uf(.Q) (2.5)

On the other hand ,as shown in ([1] Bennet and Sharpley, 1988), it is known that
tr(D = By 0D < Bgra-zoumxc @ (1F () + (1 = 26),h (D). (2.6)

From (2.5) and (2.6) the proof follows immediately.
Lemma 2.8
Letf,h € Ayg. If2 =0andx € C,(12),

then u« ({y € G 1f ) + (1= 20hM)] = If () + (1 = 26)h(x)|and y < x}) =o.

Proof. Let (1 — 2¢),, 1 0,C,, == {y EC(D:1f(y) + (1 —2e),h()| = |f(x) + (1 — 26),h(x)| and y <
x} -

and D, ={y € G;() : IfFMI-F I < (1 = 260, (1h)] + [h()Dand y < x} .

Clearly C,, ¢ D,, ¢ [0,x], Dyy1 € D, andNy-1Dp, = O .
Then 0 < u(Cy) < u(Dy) = u(NpZ:Dy) = 0.
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Lemma 2.9
Let f,h € Ayg. If2 >0 and x € Cr(2), then

u({y € C:(@:1F ) + (1 = 20)h(M)| > If (x) + (1 — 2)h(x)1})
=u({y € C;(2): (1 - 26)g(f(Wh(y) > (1 — 26) g (f (x)h(x)}).

Proof. Let (1 —2¢), 1 0,

0
R, = {y € Cr(D):If () + (1 = 26),h(M| > |f(x) + (1 — 26),h(x)| and |h(y)| < (1- Ze)n}'

0]
(1-26)p

(1-26), = {y € C@:If ) + (1 = 2),h ()] > If () + (1 — 2€),,h(x)| and|h(y)] > —2—)and

R = {y € Cr(2): (1 - 2)g(f () > (1 - 26)g(f ()h(x)}.

As u((1 = 26),) < tn (Gag) - H(A — 26),) = 0.

Then, it will be sufficient to prove that

u(R,) = u(R) Let N € N be such thatifn > N,

If(x)+ (1 —-26),h(x)| =02+ 1 —-26),(1 - Ze)g(f(x))h(x). Then, forn > N,R,, c R.In fact, if y €

02
Ry, |h(y)| < T Therefore,

) + (1 =2,k = 2+ (1 -26),(1 = 26)g(fM)hG). (2.7

So,
0+ (1-26),(1-26)g(f)rO) = If ) + A = 26),h(W)| > |f () + (1 = 2),h ()| =2+ (1 -
2¢),(1— 26)g(f(x))h(x)and consequenctly (1 — Ze)g(f(y))h(y) >(1-— 26)g(f(x))h(x).

0
Foralln = N,R — R, C {3’: Ih()I > (1—Ze)n}'

On the contrary, lety € R — R, be with |h(y)| < (1_26) . From (2.7) we have

If) + (1 = 26),h(N] = 2+ (1 = 26),(1 = 26)g(f ()R > 2 + (1 = 2€),,(1 -
Ze)g(f(x))h(x) =|f(x) + (1 — 2¢),h(x)|, which is a contradication. Since u(R — R,) < ,uh(
we have

(1—!2)6)11)

w(Ry) = u(R). (2.8)
Lemma 2.10
Let f,h € Ayg. 1f02 > 0andx € Cr(12), then
u({y € ;@ 1f ) + (1 = 20)h(Y)| = |f(x) + (1 — 26)h(x)| and y < x})
= u({y € G;(: (1 = 26)g(f )R = (1 — 26)g(f (x))h(x) and y < x}).

Proof. Let (1 — 2¢),, 4 0,

Ry = {y € Cr(D:1f () + (1 = 26),hW| = |f () + (1 — 2€),h(0)], [h(Y)] <

9
= mandy < X},
n

(1-26), = {y € G (D:f(y) + (A =26),hW] = |f(x) + (1 = 2€),h (), [R(Y)] >

<]

and R := {y € C;(2): (1 = 2)g(f Oh(y) = (1 = 26)g(f(x)h(x) and y < x }.
Now, the proof follows in the same way as in Lemma 2.9

Theorem 2.11

Letf,h € A,g and let 7, be defined by (1.2).

(a) Ifx € (f), 0p4n—20(x) = T p (%) ;

=20, mdy
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O x € (1) = (F), Opsnaamz0(®) = 1p(0) + gy, ().
Proof. (a) Let x € (f) and define 2 = |f(x)|. We observe that for all sufficiently small 1 —2¢,x €
(f + h(1 — 2¢)) . Hence, we get

O(r+n1-20) () = B(rena-2) o (F ) + (1 = 200D + e ({y € G : IF ) + (1 -

20h()] = If (@) + (1 = 20)h()|and y < x}) + u({y € C:(2): If ) + (1 = 2R > If () +
(1= 20)h()}) +u({y € G;(@D): If ) + (1 = 26)h(Y)| = |f (x) + (1 — 2€)h(x)| and y < x}).
Therefore, Lemmas 2.7 - 2.10 imply ( a).

(b) Letx € (h) — (f) . Suppose u (f) < co.

Forall e > 21 ,X € (f + (1 — 2¢€)h) .Then ,we have

Orr(1—20n(X) = u({y € () : If ) + (A = 26)h(Y)| > (1 = 26)|h(x)[})
+uy e () : If) + (A -2e)h(y)| = (1 - 2e)|h(x)|and y < x})
+ O-h(h) —(H (X) (29)

According to Lemma 2.8 the second term of (2.9) tends to zero. We only need to prove that the first term
tends to u;(0).

Ra—z2ep =y € () : If () + (1 = 26)h(y)| > (1 = 26)|h(x)},

Ta—2e =y e () : If @I <A =26)(lh(M] + [R(x)D}.
Sinceu(T;_,.) = 0 and
(f) = Ri—z¢ € Ti_3e, (2.10)

then = u((f) ) = us(0).

Now, suppose that u((f) ) = c.Given M > 0, we can choose (1 — 2€), such that u(|(1 — 2€),h(x)|) >
M and  (Cr(1(1 = 2€)1h(x)]) ) = 0.

Then by Lemma 2.5 we obtain

= ur(1(1 = 2€)1h(x)DM .Thus, sy 1-26)n(1(1 — 2€)1h(x)]) > M for all sufficiently small (1 — 2¢). It
follows that M < s p(1-26)(1(1 — 2€)h(x)]), for all sufficiently small (1 — 2¢).

Finally, as psypn1—26)(|(1 = 26)h(x)]) < 0f1n1-2¢)(x), the proof of ( b) is complete.

Definition 2.12

Let f,h € A, ¢.We define

Prr () = {Trnwir xe () r(0) + Oy, ) if x € (R) = (f) .

Example 2.13

Letf,h € Ay,glf ((f)) < oo,thenpgyism.p.t. from (f) U (h) onto[ O, u(f) U (h)))suchthat |f]| =
froprpu-ae.on (f) U (h).Letf,h € A,qandlet (1 — 2€) be non- zero real number. We denote
F(1-2¢) = ®(|f+h(1_26)I_Q(Ifl)).The next result is one of the main theorems of this section.

1-2¢
Theorem 2.14
Let,h € Ay g Thenyg,  (f,h) =

f( @(pr )0 (1F D0~ 20k + 040)

o

ow(psp)lhldp, (2.11)
() -(f)

where @', (0) is the right derivative of @ at 0. In (2.11) , we write w(o) = 0.
Proof. Assume that u ((f) ) < oo .Lete > % Clearly

Puwo(f +h(1—-26)) = -0 (0p4nr1-20)0(f +h(1 = 2€)]) du
(f+h(1—26))
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and by Example 2.13 we have

o)

Puo(f) = f o w(p;)0(fD di
() v

As (w(pf,h))* =w in [0,u((f) U (h))) , by the Hardy-Littlewood inequality (see [1] Bennet and
Sharpley, 1988)
[ee] [24

f( o )cpw(pf,h)cb(lf +h(1—-26))du < f P w(l+26)0 ((f +h(1—26)) (1+ 26)) d(1 + 2e).
fluh 0

In consequence , we get

1 j‘m
w(o 0 )0(f +h(1—26)|)d
1— 2€< (f+h(1—26))(P ( f+h(1-2 )) f u
- f @ w(ppn)d(f +h(1—-26)]) du) = 0.
(fHu)
Therefore
h(1-2 — «©
Puolf +h(1=26)) = ¢uo(f) zf @ w(psp)F(1 = 2¢) du+ P(1 — 2¢), (2.12)
1—2¢ €2) !
Plh(1-2¢€)|

where P(1 — 2¢) = f(:)_(f) ¢ w(prn) =2
Analogously with( f + h(1 — 2¢)) instead of f,we get the inequality
Pup(f +h(1=26)) = 9us(f)
1- 26Oo
<

f cpw(af+h(1_2€))(p. (1-2.€)du.+p.(1-2€.), (2.13)
(f+h(-2€))n(f)

® lh(1-2¢)|
where Q(1 — 2¢) = f(h)_(f) @ B(. Pr+na-20) 1_2:

Let % < e < 0.Since @ is a convex function, we have @'(1 + 2¢)1 + 2¢ < (Z)(Z(l + 26)) forall e > _71
In addition, the mean value Theorem implies that

IF(1—2e)| < @"({lf +h(1—2e)|,If1})IAl

Therefore |w ((p70)) F(1 = 26)| < w(pyn) 220111 + IRD).

Also, for all sufficiently small (1 — 2¢),e > %,from the proof of Theorem 2.11 we obtain pr, <
T (f+h(1-26))-S0s |w(0f+n(-26)) F(1 = 26)| < w(psrn)@(2(If1 + |RD)) for all sufficiently small (1 —
2€) ,e > %.Clearly,

o)

f( )cpw(pf,h)®(2(lfl + [h]))du < f @ wP2(fI+ [RD"A(1 + 2€) < oo,
f 0

then, from Theorem 2.11 and the Lebesgue Convergence Theorem we get

co

j @w(prn)F(1—2€)du = J @w(prn)? (DA —26)g(Hhdu (2.14)
) )

and

co

| 00 (G ena20)F(1 =26 du = | @alprn)0 (FDA = 299(h dit (215)
(f+r(1-2))n(f) )
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If ((h) — (f) = 0,thenP(1—2¢)= 0and Q(1 —2¢) = 0.So,(2.11) holds.
Otherwise, for all sufficiently small (1 — 2¢), € > %

h(1-2
o(pr) L2 (51, ) @URDOR) — ().

A

Since

[ 00(0n ) 0UMD < pup® <0, (216)
n) -

the Lebesgue Convergence Theorem implies that

P(1—2¢e) = @, (0) @ w(psp)lRldu. (2.17)
(n) -(f)
On the other hand ,
o(lh(1—-26)])
(0 +n(1-2¢)) e = 04.(0) w(pysn)lRlon(h) — (f)

and for all sufficiently small (1 — 2¢) ,e > % (2.9) implies

h(1-2
w(0f+h(1_ze))®(| 1(_ZEE)I)S w(ah(h)_(f))Q’ﬂhDO” (R) —(f). (2.18)

According to (2.16) and the Lebesgue Convergence Theorem ,

(1 —26) = 0, (0) f( PRI CED

Therefore,(2.14) ,( 2.15) ,(2.17) and(2.19) imply (2.11) .
Now assume that u ((f)) = oo .Similarly, to the proof of (2.12) and(2.13) ,we can obtain

‘Pw,@(f'l'h(l—ze))_(l’w,@(f)
f(f) w(prn)F(1 = 26)dp < 1-2¢ =

j @ w(psn)F(1—2€)du+Q(1—2¢). (2.20)
(f+h(1-26))n(f)

Proceeding as before , we get (2.14) and (2.15). If u((h) — (f) =0,Q(1 —2¢) = 0and (2.11) istrue. In

i g(lh(1-26))
opposite case ,w(0f4n1-z¢)) 1_—266 =0.

From (2.16),(2.18) and the Lebesgue Convergence Theorem,Q(1 — 2¢) = 0.The proof is complete. In the
next theorem, we obtain the one-sided Gateaux derivative of the Lebesgue norm in terms of the one-sided
Gateaux derivative of the functional ¢, 4.

Theorem 2.15

Letf,h€ Ay,g,f #0 .Then

Viuo (s ")

Yous (||f||w,¢' Ilfflcw,@)

Proof. If h = 0, (2.21) is obvious. Now suppose that h = 0.
I1f Nl w,0

Forall (1 —2¢),0 < 1—2e <—==, we denote
2||hllw,g

Q( |f +h(1-2€)| )_Q( Ifl )
IF+h(A=26)ll,,, 7.,

K(1—-2e) = =y z
First , we assume that u((f) ) <oo and we consider

Viklloo (1) = (2.21)

_ g, (Lrenazal
and G(l - 26) =Puwp (||f+h(1—26)||a),<2)).
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®(||f+|i}zl((11—_22:))||| )
P(1—2¢) = f(h)_m cpw(pf,h)T‘”'@du and

¢ (nf lhh((l - 2E)>||| )
_ + 1-—2e w0
Q(1—2e) = f(h) " @ w(0rina1-26)) 1 —2¢ du

Proceeding analogously to the proof of Theorem 2.14,we can obtain

f @w(prn)K(1—26)du+ P(1—2€) < G(1—2¢e)—G(0) -
N

1-2¢
f © a)(af+h(1_2€))l((1 —2e)du + Q(1 — 2¢), (2.22)
(F+r(1-2))N(f)
Let0 < 1 — 2¢ {1 ”f”‘*””}
20|l o
F11F Nl eog f+h(-20)l _ _If|

Adding and subtracting to the expression and applying the

If+h(1-28)llwollfllwe
triangular inequality we obtain

If+h(1-26)llwg  Ifllwe

|f + h(1 — 2¢)| |f] 2(1—-2e)M
- < (£ 1+ [hD,
If +h(1=26)llwe  IIfllwe 1S llw,0
where M = 1 + oo consequence, the Main Value Theorem implies that

Ifllwo’

J(If+RA=20]  If]
0 ({uf R =26)lus’ ||f||w,¢}) F+h(1-26)  If]

1-2¢ If +h(A=20)lws  Iflloo

2M 4
<0 (”f”w@(lflﬂ D)”f”w (fI+1n) <0 (”f”w (|f|+|hl)>

From the Lebesgue Convergence Theorem, we can show that

| oolor)ra-zepdu = | 9 0(0pni20))K (1 — 26)dp
N (f+h(1-26)) n(f)

1-2 h

IK(1=26)| <

TPARTY
o,
- 2 V||.||w®(f,h) du (2.23)
1125 Mo
and
. . h
lim P(1-26) = lim (1~ 2¢) = 94,(0) f(h) o) [ (229

Thus, from (2.22)-(2.24) , we have
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G(1—2e)—-G(0)

1-2€-0% 1-2e¢
|hl
=@, (0 L
2 Q) —(f)(pw(pf’h) If w0 :
) Ifl> (1-20g(HOr  Ifl
- Jh) |du. .25
Jrf(f)(pw(pf'h)(D <”f”a),(2) If w0 ”f”i)‘q)y”-Hw,Q)(f ) |du.  (2.25)

Since @0 (ﬁ) = 1forany g € A, — {0}(see [6] Kamifiska,1990) we have
0
G(1-2¢)=1

for0<1—-2e< %.Therefore, from (2.25) and Theorem 2.14, we get (2.21) .
w,P

The case u((f) ) = oo follows in asimilar way without using P(1 — 2¢) and after proving that Q (1 — 2¢) =
0.

3. characterization of smooth points for the Luxemburg norm

We let X be a Banach space and let T: X —» R™ be a convex functional. The following example shows that
the set of smooth points of the functional T, in general, is not equal to the set of smooth points of the
Minkowski functional of { f € X:T( f) < 1} )[12] Levis and Cuenya, 2007).

Example 3.1

In a Hilbert space X define the continuous convex function

T =4 if Wf>11 if Qifil st

It is not Gateaux differentiable at any point f of norm |, but the Minkowski functional of { f € X:T(f) <
1}. (which is the closed unit ball) is just the norm , which is infinitely Gateaux differentiable everywhere
except at the origin.We consider the sets
E®? = {f € App —{01:u{lfl =1—2€} =0 foranye > %} and

A*P:= E*P n{f € A,g:pu{f =0} =0 onpur(0) = o}.

In ([10] Levis and Cuenya, 2004),we have proved that f € A, is a smooth points of ¢, 4if f €
E“?(f € A“?) when @, (0) = 0(9,.(0) > 0).

It is well-known that if X is a Banach space and T: X — R is a convex functional then for all f,h € X,
v1 (f, h)andy7 (f, h)always exist and the equality y7 (f, h) = — y7 (f, —h)holds (see [14] Pinkus,1989),we
showed arelation between the one-sided Gateaux derivative for the functional ¢, 4 and the one-sided
Gateaux derivative for the Luxemburg norm .Consequently, f is a smooth point of the Luxemburg norm if

and only if ”fﬁc is a smooth point for ¢, 4 .The next theorm follows immediately.
w,0

Theorem 3.2

The set of smooth points for the Luxemburg norm is E?(A%?) if ¢'.(0) = 0(9.(0) > 0).

Remark 3.3

It is well-known that E“*? and A“*? are dense sets in the A, ¢ because the points of Gateaux- differentiability
of the norm in a separable space always from a dense set (see[13] Phelps,1989).
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4.Characterization of best approximants

We characterize the set of best approximants from convex closed sets using the one-sided Gateaux
derivative. Moreover, we establish a relation between the best ¢, g-approximants and best approximants
from a convex set.Let f,h € A, 4.We denote by

Ar={o:(f) > (f):oismp.t.and |f| =f o0o,u—a.eon(f)}

and

Ty = —0,(0) @ w(psn)lhldu. (4.1)
(n) =)

In (4.1), we write w() = 0.
Theorem 4.1
Let K c A, g beaconvex closed set, let f,h € A,y — K
and let h* € K. Then the following statements are equivalent :
@ k' €P, ,(f.K);
(b) f(i_h.) @ 0(pronp—n)?' (If —h DA —26)g(f — h*)(h* — h)dp = Ty_p- po_pfor all h € K;
(©) f(‘;_h.) ew(@)@'(If —h*' DA - 26)g(f —h*)(R* —h)dp =Ty p-p-—p forall h € K.
In addition, if T_p- - _p—o,these statements imply
(D@ue(f —h°) < foa(pw(l +26)0"((f —h*)*"(1 +26))(f — R)*(1 + 2€)d(1 + 2¢) forall h € K.
Proof. The implication( b) = (c) is obvious.
(@) (b). This is an immediate consequence of Theorem 2.14 and ([14] Pinkus,1989,Theorem 1.6), because
this theorem still holds if we replace the norm|| - || by the functional ¢, ¢.
(c)=(b). Let h€ K and o € As_p- .Takingo,f — h*and h* — h instead of p; p,, f and h respectively in
(2.12) or (2.20) we have
a

_L 90O = KD =209 = KK = Rt =Ty <
—n°

Yo, o(f —h)(h"—h).
By hypothesis and Theorem 2.14, we get

0= ]( )‘P w @) (If —h' DA =268)g(f —h )R —h)du —Tr_p-po—p < YJw,q)(f —h R —h)
f-n

) f(f )‘P w(pf_h.’h._h)wl(lf —h'DA —-2e)g(f — h)(h" —h)du — T _p p—n-
—h*

(b)=(d) .Assume Tr_p- p-—p, = 0 and let h € K .Since for all € > _71 ,0(1+2¢) < 0'(1+2e)1+ 2¢,
then by hypothesis and the Hardy-Littlewood inequality we have

0ol =KV | @lppree )0 ~KDIF = g

<[ pwlorew ) UF = DA - 209(F ~ R ~ W
(f-h°)

According to ([1] Bennet and Sharpley,1988,Proposition7.2) w(ps—p pe—n )@’ (If — k') ~ 0@’ ((f — h*)*)
and w®@'((f — h*)*) is anon-increasing function. So,

Pwo(f —h) < f pw®' ((f —h)*(1+26)(f — )" (1 + 2e)d(1 + 26).
0

The following example shows , that the implication (d)=(a) of Theorem 4.1 is not true in general.
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Example 4.2

_ e—1
Let @ = 1. We consider ¢(1+ 2¢) = {e(+29) —2(1 +¢) if 71 <e<0,(e—2)(1+2€)ez if €>
0.

1
K :={h €A,y hisconstant}and f = Xjo,2y- I is easy to see that Pug(f) = (e —2) [2.0(1+26)d(1 +
’2
2€).0n the other hand, for h € K and _71 > e> _Tl, we have(f — h)*(1 + 2¢) 2% .Thus, for all h € K,

[} w0 +26)¢'(f 1 +2))(f —h) (1 +2€)d(L + 2¢) > ;fo w(1+ 2€)d(1 +

2€).Consequently,(d) is true for h* = 0. However, B, | ¢(f, K) = {1} Nevertheless, we show in the next

2
theorem that (d)=(a) holds when ¢ (1 + 2¢) = (1 + 2¢e)**e.
Theorem 4.3
Let K © L, 1+¢) b€ aconvex closed set, let 0 < e < oo,

let f € Ly 1+¢) — K and let h* € K.Then, the following statements are equivalent :
@ A E P (LK)

0 Nf =kl < [F o + 20 ((f —h)* (1 +26)°(f — B)*(1 + 2€)d(1 +
2¢€) forallh € K.
Proof. If € = 0, this is obvious. Assume that 0 < € < oo . (a)=( b) is an immediate consequence of Theorem
4.1.
(b)—( a) .Let (1+¢€) and (1 —€) be conjugate numbers and let h € K.From hypothesis and Hdélder
inequality, we get

If = h |8 < fa. w(l+2)((f—h)1+ 26))€(f —h)*(1+2e)d(1 + 2¢)
0

(w,1+€) —
- fa. W1 + 2607 ((f — k) (1 + 26)) (L + 2T (f — B)*(1 + 26)d(L + 2¢)
0
<Wf = A ltwa+ollf = hllwi+e.

So, the proof is complete.Next, we establish a relation between the best ¢, g-approximants and best
approximants from a convex set K.

Theorem 4.4

Letf,€ A,pand K c A, 4 be convex set such that

§ = Eyy,,(f,K) > 0.Then, h* € Py, (f, K)if and only if € B, (£,5).

Proof. It follows immediately from ( [14] Pinkus,1989, Theorem 1.6 and Theorem 2.15).

Remark 4.5

Theorem 4.4 is known for arbitrary sets K in modular space (see [9] Kilmer and Kozlowski,1990).
Henceforth, we consider @ < oo, K := {g € A, 4: g is constant} and

f € Ay .Clearly,P, . (f, k)is anonempty and compact interval.We denote

f=P,,(fik)andf =P, (fk).

As a direct consequence of ([14] Pinkus,1989, Theorem 1.6) we have that c € P, ,(f,k) if and only if

Voo f —c1) 2 0andyg (c—f,1)=0. (42)
The next characterization of best constant ¢, s-approximants of f* follows from (4.2) and Theorem 2.14.

Theorem 4.6
Let f,€ Ayg. Then c € B, (f, k) if and only if the following statements hold:

@ 0(pr-c)9'(F =V 2 f,_ . 0(py-c1)9'(c = i
and

(b)ffsc'w(pc—f,l)w(c —fdu =z ff>c'w(pc—f,l)®’(f —c)dp.
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We write, @' (0) := @', (0).According to Theorem 4.4 and 4.6,we obtain the following characterization of
best constant approximants :

Corollary 4.7

Let f € Aw,1+e) — K.Then ¢ € Py (f, k)if and only if the following statements hold:

(a) ff>c (l)(pf Cl)(Z) <||f C”wQ)) U= ff<c'w(pf_c'1)¢l (||CC]:{(‘,¢) d'u and
(b) ff<c @(pe-11)0" (uc fllwo) w2 ff>c @(pe-71)?' (Ilff ] )d“

Cllwg
Now our purpose is to glve away to construct the best Pu,p- appr0X|mantS f and f

We begin with three lemmas.
Lemma 4.8
If ¢ <dthenforall 0 <x < a we have
(8) - (f () = ©) < pyp_q(f (%) = Dif f(x) = d and
0) tr-a(d = f()) < py—e(c = F)if f(x) <c.
Proof. (a) Suppose f(x) = d, clearly,
p{y:2d—f) < fM <f) <ul{y:2e-f) < f) < fD.

Therefore, u({y: |f (y) —dl < f(x) —d}) S uly:1f (y) —cl < f(x) —c})
and consequently (a) holds.
(b).Now suppose that (x) < c . Clearly

u{y:1f ) —cl < c = fOD < uly: If ) —dl = d — f(x)}) and thus (b) is true.
Lemma 4.9
If c < dthenfor 0 < x < a we have:
@) pr-c1(x) < pp_a1(x) if f(x) =dand
(0) pr_a1(x) < prci () if f(x) <c.
Proof. (a).Suppose f( x) > d. Since f( x) > c, from Lemma 4.8 we get

Pr-ai(0) = upa(f(x) —d) + u({y: f(y) = fF(x)and y < x})

=2 pr—c(f() =) +ul{y: f(y) = f)and y < x}) = pp_¢1 ().

Now suppose that f(x) = d
Asps_c(d—c) < psq(0)and x € (f —c) ,thenps_1(x) = us_(d—c)+p({y: f(y) =dandy <
x}) < pp—q(0) + u{y: f(y) =dand y < x}) = py_q1(x).
(b). Assume f(x) < c.Since
r—a(d =) + p(y: fO) —d = d = f()}) < prc(c = F(X)),

we have pr_g1(x) < pp_c(c = FO)) + u{y: f(¥) = fF() and y < x 1) < p_c1(%).
Lemma4.10 Let f € Ay 14¢) - Ifc < d, then
@Ye,,(f —d 1) <vg,,(f —c1)and
0 v, —f D)<y, d-f 1.
Proof. (a) We will show that y‘;-w,(b (f—d, 1)< y;’-w.@ (f — ¢, 1if c < d.We define
P(w) = ff 0(pp-ur)® (f —wdn and Qu) = ff 0(Pur)® (u— Fdp.

<u

Clearlyy(;w,a (f —u,1) = P(u) — Q(u).It will be sufficient to prove that P is a non-increasing function and

Q is a non-decreasing function. Since w is non-increasing @ is a non-decreasing and {y: f(y) = d} c
{y: f(y) > c}, then from Lemma 4.9 ( a) we have
P(d) < fjé>c-w(Pf—c,1)®'(f — ¢)du < P(c). Similarly, from Lemma 4.9 (b),

0(0) < ff 0(py—a1)®'(d — du = Q).
<d
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(b). Replacing in (a),f, c and d by - f, —d and—c respectively, we obtain ( b).
Theorem 4.11 Let f € A, 14¢)-Then

f= {C:VJQ,,@(f —¢,1) = 0} and f = {c:y(;w(c - f,1) = 0}.
Proof. Suppose that there exists ¢, c > f such that

Youolf —¢,1) 2 0. (4.3)

By Lemma 4.10,
Y(;w.(z) (C - f’ 1) = )/(;-w,g (i - f' 1) = 0. (44)

Then,(4.2)-(4.4) imply that c € P, ,(f, k), a contradiction.Thus,
f={cvg,,(f —c 1) =0}.
Similarly, we can see that f = {c:yg, ,(c — f,1) = 0})[12] Levis and Cuenya, 2007).

5. Conclusion
By Letting A,, ¢ be the Orlicz-Lorentz space.We study Gateaux differentiabilitiy of the functional ¢, (f) =

fom.@(f*)w and of the Luxemburg norm. More precisely,we obtain the one-sided Gateaux derivatives in

both cases and we characterize those points where the Gateaux derivative of norm exists. We give a
characterization of best ¢, g-approximants from convex closed subsets and we establish a relation between
best ¢, g-approximants and best approximants from a convex set.A characterization of best constant ¢-
approximants and the algorithm to construct the best constant for maximum and minimum ¢, -
approximants are given.

References
[1] C.Bennet and R. Sharpley, Interpolation of Operators (Academic Press, London, 1988).
[2] N.L.Carothers, R.Haydon and P.K.Lin, On the isometries of the Lorentz function spaces, Israel J.Math.84,
265-287 (1993).
[3] I.Halperin, Function spaces, Canad. J. Math.5, 273-288 (1953).
[4] H. Hudzik, A. Kaminska, Mastylo, On the dual of Orlicz-Lorentz spaces,Proc.Amer. Math. Soc. 130.
No0.6, 1645-1654 (2002).
[5] R. Hunt, On L(p, q) spaces, Enseign. Math.(2) 12, 249-276 (1966).
[6] A. Kaminska, Some remarks on Orlicz-Lorentz spaces, Math.Nachr.147, 29-38 (1990).
[7] A. Kaminska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. (Basel) 55, 173-180 (1990).
[8] A. Kaminska, Uniform convexity of generalized Lorentz spaces, Arch. Math. (Basel) 56, 181-188 (1991).
[9] S.J. Kilmer and W.M.Kozlowski, Best approximants in modular function spaces, J. Approx. Theory 63,
339-367 (1990).
[10] F.E.Levis and H.H. Cuenya, Gateaux differentiability for functional of type Orlicz-Lorentz, Acta Math.
Univ. Comenian. (N.S.) 73, No. 1, 31-41 (2004).
[11] F.E. Levis and H.H. Cuenya, Best constant approximants in Lorentz spaces, J. Approx. Theory 131,
196-207 (2004)196-207.
[12] F.E.Levis and H.H. Cuenya, Gateaux differentiability in Orlicz-Lorentz spaces and applications, Math.
Nachr. 280(11) , 1282-1296 (2007).
[13] R.R. Phelps, Convex Functions Monotone Operators and Differentiability, Lecture Notes in
Mathematics Vol. 1364 (Springer-Verlag, Berlin, 1989).
[14] A. Pinkus, On L*-approximation, (Cambridge University Press, Cambridge, 1989).
[15] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces (Marcel Delkker, Inc.,New York, 1991).
[16] J.V.Ryff, Measure preserving transformation and rearrangements, J. Math. Anal. Appl.31, 449-458
(1970).

Page
101




