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Abstract 

Second-order systems are commonly used in control engineering due to their simplicity, as they can 

be easily modeled with straightforward differential equations, and their ability to accurately 

represent various physical systems like mass-spring-damper setups. They facilitate stability analysis 

through key parameters such as damping ratio and natural frequency, which help predict system 

responses using techniques like root locus and Nyquist plots. Moreover, their predictable frequency 

responses aid in controller design and tuning, while allowing for optimization of performance 

metrics like rise and settling time without compromising stability. Widely understood control 

methods, particularly PID control, enhance the ease of designing for these systems, making them 

suitable for many industrial applications. Overall, second-order systems provide a practical balance 

between simplicity, effectiveness, and the capacity to represent real-world dynamics, serving as a 

foundation for tackling more complex engineering challenges. 

Keywords: Ramp Input; Step Input; First Derivative Error Compensation; Damping Ratio; Damped 

and Undamped Frequency; Second Order Response.  
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1. Introduction 

Differentiation, integration, and a wide array of differential equations are commonly employed in 

the intricate mathematical analysis of numerical solutions to complex problems across various 

fields, including physics, engineering (such as mechanical, electrical, and industrial mechatronics), 

economic analysis, biological sciences, statistical data analysis, and computer science. Examples of 

common applications of differential equations in advanced mathematical analysis include: (i) 

Thermodynamic modeling, flood frequency forecasting, age-related shocks, and acoustic wave 

analysis; (ii) Nonlinear dynamical systems and the resolution of partial differential equations within 

multidimensional contexts; (iii) The mathematical analysis of sophisticated financial strategies like 

factor options and other derivatives; (iv) Examination of social phenomena through mathematical 

discovery and diffusion models; (v) Data analysis and the extraction of statistical insights in data 

science.  

Various complex mathematical analysis techniques are employed to solve differential equations in 

these contexts, utilizing numerous tools such as finite difference methods, graphing, numerical 

concentration definitions, and more.  

Lead and lag compensators are extensively used in control systems. A lead compensator can 

enhance a system's stability or response speed, while a lag compensator can decrease (though not 

entirely eliminate) the steady-state error. Based on the desired outcomes, one or more lead and lag 

compensators can be employed in various combinations.  

Typically, lead and lag compensators for a system are designed in the form of a transfer function [1] 

– [6]. 

2. Literature Review on the Response of Complex Lag Elements 

Complex lag elements are critical components in system dynamics and control theory, 

encompassing a combination of lag and lead characteristics manifested in various engineering 

applications. The modeling and analysis of these elements play a vital role in understanding the 

behavior of systems influenced by delays and phase shifts. This literature review seeks to explore 

the theoretical foundations, mathematical representations, and empirical studies surrounding the 

response of complex lag elements, particularly in the context of control systems, signal processing, 

and mechanical systems [7], [8], [9], [10], and [11]. 

The concept of lag in dynamic systems has been historically tied to time delays observed in physical 

processes. A complex lag element typically combines a straightforward lag with an added phase 

shift, creating a transfer function represented in the Laplace domain. The complex nature of these 

lag elements results from their ability to characterize systems where feedback loops or interactions 

introduce both time-delay and phase alteration. Researchers such as G. Franklin et al. (2015) have 

emphasized that understanding these elements is pivotal for stability analysis and controller design 

[12], [13], [14], [15] and [16]. 

Mathematical modeling of complex lag elements often employs a variety of techniques, particularly 

in the context of transfer functions and state-space representations. One notable approach is the use 

of Padé approximations, which provides a rational function that approximates the time delay in a 

system. This approximation is crucial for facilitating control strategies as it allows engineers to 

translate time delays into manageable forms within the feedback loop (R. H. E. Smith, 2017). 

Furthermore, methods such as frequency response analysis and root locus techniques are commonly 

utilized to assess system stability and performance. The literature indicates that these techniques are 

instrumental in designing robust controllers capable of handling uncertainties prevalent in systems 

governed by complex lag dynamics [17] and [18]. 

Various empirical studies have explored the response of complex lag elements across a range of 

applications, from mechanical systems to electronic circuits. For instance, in the study of 

automotive systems, complex lag elements emerge in the control of engine dynamics, where delays 

in throttle response and vehicle speed must be managed for optimal performance (J. D. McGowan, 

2018). Analogous research has been conducted regarding aircraft flight control systems, where the 
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identification and compensation for time delays are crucial for maintaining stability during 

maneuvering (K. J. Astrom & H. K. M. Witten mark, 2019). These empirical studies highlight the 

real-world significance of comprehending the dynamics of complex lag elements, as variations in 

response time can severely impact operational efficacy and safety [19], [20] and [21]. 

Despite the advancements in understanding complex lag elements, several challenges remain. One 

prominent issue is the difficulty in accurately modeling time delays, particularly in nonlinear 

systems where the lag might change dynamically based on operating conditions. Furthermore, the 

integration of complex lag elements into decentralized control systems adds a layer of complexity, 

necessitating further research into adaptive control strategies capable of managing both time delays 

and system interactions. Future research directions could include the development of advanced 

machine learning techniques to predict responses in complex lag systems, paving the way for more 

effective control strategies adaptable to varying environmental conditions. 

In summary, the response of complex lag elements is a multifaceted area of study that combines 

theoretical models, mathematical techniques, and empirical evidence across various fields of 

application. The literature underscores the importance of accurately modeling and controlling these 

elements to ensure system stability and performance. As the demand for more sophisticated and 

responsive systems continues to grow, further exploration into the behavior of complex lag elements 

will be essential for advancing technology and engineering practices. Given the vital role that these 

elements play in dynamic systems, ongoing and future research efforts will undoubtedly contribute 

to a deeper understanding and more effective utilization of complex lag characteristics in practical 

applications [22], [23] and [24]. 

3. Step Input Function 

Initial conditions for the step function [1], [2], [3], [4] and [5]: 

θi = 0, 𝑎𝑡  𝑡 < 0 

θi = 𝑘,        𝑎𝑡  𝑡 ≥ 0 

θi = 𝑘 = 1 (𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝) 
The standard formula for a system with a complex conversion or transfer factor is: 

𝑇. 0 =
𝜃𝑜

𝜃𝑖
=

1

1 + 2𝜁𝜏𝐷 + 𝜏2𝐷2
    

By multiplying inversely (i.e. cross multiplication) the above equation: 

𝜃𝑜 + 2𝜁𝜏𝐷𝜃𝑜 + 𝜏2𝐷2𝜃𝑜 = 𝜃𝑖   → (𝑖) 

The complete solution of the above differential equation is: 

𝜃𝑜 = 𝑃. 𝐼 + 𝐶. 𝐹 

Steady State (P.I): 

𝜃𝑜 = θi = k = 1 

Unstable state or transient state (C.F): 

𝜃𝑜 = 𝑅𝑒𝑠𝑡 
d𝜃𝑜

dt
= 𝐷𝜃𝑜 = 𝑆𝑅𝑒𝑠𝑡 

d2𝜃𝑜

dt2
= 𝐷2𝜃𝑜 = 𝑆2𝑅𝑒𝑠𝑡  

𝑅𝑒𝑠𝑡 + 2𝜁𝜏𝑆𝑅𝑒𝑠𝑡 + 𝜏2𝑆2𝑅𝑒𝑠𝑡 = 0 

𝑅𝑒𝑠𝑡(1 + 2𝜁𝜏𝑆 + 𝜏2𝑆2) = 0 

τ2S2 + 2𝜁𝜏𝑆 + 1 = 0 

𝑆 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

∴ 𝑆 =
−2𝜁𝜏 ± √4𝜁2𝜏2 − 4𝜏2

2𝜏2
=

−2𝜁𝜏 ± √4𝜏2(𝜁2 − 1)

2𝜏2
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=
−2ζτ ± 2τ√ζ2 − 1

2τ2
=

−ζ

τ
±

1

τ
√ζ2 − 1 

3.1 The First Case 

When ζ=0 (Free or Undamped Frequency): 

 𝑆 =
−𝜁

𝜏
±

1

𝜏
√𝜁2 − 1 

Substituting ζ=0, 

∴ 𝑆 = ±
1

𝜏
√−1 = ±𝑗

1

𝜏
 

∴ 𝜃𝑜 = 𝑅𝑒𝑠𝑡 = 𝑅𝑒±𝑗
𝑡
𝜏 

It is known that: 

ejθ = cos 𝜃 + j sin θ → (ii) 

And,  

e−jθ = cos 𝜃 − j sin θ → (iii) 

Adding equations (ii) and (iii), we obtain: 

cos 𝜃 =
ejθ + e−jθ

2
 

By subtracting equation (iii) from equation (ii), we obtain: 

j sin θ =
ejθ − e−jθ

2
 

∴ 𝜃𝑜 = 𝑅 cos(𝜃 − Ψ) = 𝑅 cos (
𝑡

𝜏
− Ψ) 

Complete solution: 𝜃𝑜 = 𝑃. 𝐼 + 𝐶. 𝐹 

∴ 𝜃𝑜 = 1 + 𝑅 cos (
𝑡

𝜏
− Ψ) → (𝑖𝑣) 

Applying the Boundary Conditions: 

When t=o and θo = 0 for equation (iv), 

0 = 1 + 𝑅 cos(−Ψ) = 1 + 𝑅 cos Ψ 

𝑅 cos Ψ = −1        ∴ 𝑅 =
−1

cos Ψ
 

When t=o and 𝐷θo = 0 for equation (iv), 

𝐷𝜃𝑜 = 0 + R [−
1

𝜏
sin (

𝑡

𝜏
− Ψ)] = 0 

−
𝑅

𝜏
sin(−Ψ) = 0 

∴
𝑅

𝜏
sin Ψ = 0        ∴ sin Ψ = 0 

Therefore: 

Ψ = sin−1 0 = 0 

∴ 𝑅 =
−1

cos Ψ
=

−1

cos 𝑜
=

−1

1
= −1 

∴ 𝜃𝑜 = 1 − cos
𝑡

𝜏
= 1 − cos 𝜔𝑛𝑡 

As,  (𝜔𝑛 =
1

𝜏
) 

Figure 1 below shows the first case of the step function when ζ = zero (free or undamped 

frequency). 
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Figure 1: the First Case of the Step Function when ζ = zero (Free or Undamped Frequency) 

3.2 The Second Case 

When ζ<1 (Under - Damped Oscillatory): 

 𝑠 =
−𝜁

𝜏
±

1

𝜏
√𝜁2 − 1 

Which can be written in the following form: 

𝑆 =
−𝜁

𝜏
± 𝑗

1

𝜏
√1 − 𝜁2 

Unsteady state (C.F): 

𝜃𝑜 = 𝑅𝑒𝑠𝑡 

𝜃𝑜 = 𝑅𝑒(−
𝜁
𝜏

±𝑗
1
𝜏

√1−𝜁2)𝑡
 

= R𝑒
−𝜁𝑡

𝜏 cos (
𝑡

𝜏
√1 − 𝜁2 − Ψ) 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 =
1

𝜏
√1 − 𝜁2Damped frequency,  

∴ 𝜃𝑜 = 𝑅𝑒
−𝜁𝑡

𝜏 cos(𝜔𝑑𝑡 − Ψ) 

 𝑇ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝜃𝑜 = 𝑃. 𝐼 + 𝐶. 𝐹 

𝜃𝑜 = 1 + 𝑅𝑒
−𝜁𝑡

𝜏 cos(𝜔𝑑𝑡 − Ψ) 

Applying the boundary conditions: 

When t=0 and 𝜃𝑜 = 0 

The above equation becomes as follows: 

0 = 1 + 𝑅 cos(−Ψ) 

0 = 1 + 𝑅 cos Ψ 

𝑅 cos Ψ = −1   

∴ 𝑅 =
−1

cos Ψ
 

When t=0 and 𝐷𝜃𝑜 = 0 

∴ 𝐷𝜃𝑜 = 0 + 𝑅 [𝑒
−𝜁𝑡

𝜏 × −𝜔𝑑 sin(𝜔𝑑𝑡 − Ψ) + cos(𝜔𝑑𝑡 − Ψ) ×
−𝜁

𝜏
𝑒

−𝜁𝑡
𝜏 ] 

0 = 𝑅 [−𝜔𝑑 sin(−Ψ) −
𝜁

𝜏
cos(−Ψ)] 

0 = 𝜔𝑑 𝑠𝑖𝑛 𝛹 −
𝜁

𝜏
𝑐𝑜𝑠 𝛹 

𝜔𝑑 sin Ψ =
𝜁

𝜏
cos 𝛹 

sin Ψ

cos Ψ
= tan Ψ =

ζ

τωd
=

ωnζ

ωd
=

ωnζ

ωn√1 − ζ2
 

=
𝜁

√1 − 𝜁2
 

In addition, using the Pythagorean Theorem as shown in the figure below, we get: 
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𝑡𝑎𝑛 Ψ =
𝜁

√1 − 𝜁2
    ∴ Ψ = sin−1

𝜁

√1 − 𝜁2
 

cos Ψ =
√1 − 𝜁2

1
= √1 − 𝜁2 

But, 𝑅 =
−1

cos Ψ
=

−1

√1−𝜁2
                    

∴ 𝜃𝑜 = 1 −
1

√1 − 𝜁2
𝑒

−𝜁𝑡
𝜏 cos (

𝑡

𝜏
√1 − 𝜁2 − tan−1

𝜁

√1 − 𝜁2
) 

Figure 2 below shows the Second Case of the Step Function when ζ<1 (under-damped frequency). 

 
Figure 2: the Second Case of the Step Function when ζ<1 (Under-Damped Frequency) 

3.3 The Third Case 

When ζ=1 (Critically Damped Frequency): 

𝑠 =
−𝜁

𝜏
±

1

𝜏
√𝜁2 − 1 

𝑆 =
−1

𝜏
 

Unsteady state (C.F): 

𝜃𝑜 = 𝑅𝑒𝑠𝑡 = 𝑅𝑒
−𝑡
𝜏  

𝑇ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝜃𝑜 = 1 + 𝑅𝑒
−𝑡
𝜏  

Boundary conditions: 

When t=0 and 𝜃𝑜 = 0 

𝜃𝑜 = 1 + 𝑅𝑒
−𝑡
𝜏  

0 = 1 + 𝑅        ∴ 𝑅 = −1 

∴ 𝜃𝑜 = 1 − 𝑒
−𝑡
𝜏 = 1 − 𝑒𝜔𝑛𝑡 

Figure 3 below shows the third case of the Step Function when ζ = 1 (Critically Damped 

Frequency). 
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Figure 3: the Third Case of the Step Function when ζ = 1 (Critically Damped Frequency) 

3.4 The Fourth Case 

When ζ>1 (Over –Damped Frequency (Non-Oscillatory)): 

𝑆 =
−𝜁

𝜏
±

1

𝜏
√𝜁2 − 1 

Unsteady State (C.F): 

𝜃𝑜 = 𝑅𝑒𝑠𝑡 = 𝑅𝑒(
−𝜁
𝜏

±
1
𝜏

√𝜁2−1)𝑡
 

𝑇ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝜃𝑜 = 𝑃. 𝐼 + 𝐶. 𝐹 

𝜃𝑜 = 1 + 𝑅𝑒(
−𝜁
𝜏

±
1
𝜏

√𝜁2−1)𝑡
 

𝜃𝑜 = 1 + 𝑅𝑒
−𝜁
𝜏

𝑡 [𝑒±
𝑡
𝜏

√𝜁2−1] 

Figure 4 below shows the Fourth Case of the Step Function when ζ>1 (Over Damped Frequency). 

 
Figure 4: the Fourth Case of the Step Function when ζ>1 (Over Damped Frequency) 

3.5 Typical Example of Step Input (refer to references [1] – [6]). 

A flywheel driven by an electric motor that is automatically controlled to follow the movement of 

the hand wheel. The implicit moment of inertia of the flywheel is 150 𝑘𝑔𝑚2 and the motor torque 

applied to it is 2400 𝑁. 𝑚 𝑝𝑒𝑟 𝑟𝑎𝑑 of misalignment between the flywheel and the handwheel. The 

viscous friction is equivalent to a torque of 600 𝑁. 𝑚 𝑟𝑎𝑑−1 𝑠 if the handwheel is rotated suddenly 

through 60° when the system is at rest; determine an expression for the angular position of the 

flywheel with respect to time. 

The solution 

𝐼 = 150 𝑘𝑔𝑚2    Moment of inertia, 

Torsional stiffness, 𝜆 = 2400 𝑁. 𝑚/𝑟𝑎𝑑 
𝐶 = 600 𝑁 . 𝑚𝑠/𝑟𝑎𝑑   Coefficient of viscous damping, 

θi = 60° =
60×π

180
=

π

3
rad  Handwheel displacement, 

𝜃𝑜(𝑡) =? 

Figure 5 below shows a flywheel driven by an electric motor that is automatically controlled to 

follow the movement of the handwheel. 
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Figure 5: a Flywheel Driven by an Electric Motor 
Equation of motion: 

λ(𝜃𝑖 − 𝜃𝑜) − 𝐶𝜃𝑜
° = 𝐼𝜃𝑜

°°
 

λ𝜃𝑖 − λ𝜃𝑜 − CD𝜃𝑜 = 𝐼𝐷2𝜃𝑜 

λ𝜃𝑖 = λ𝜃𝑜 + CD𝜃𝑜 + 𝐼𝐷2𝜃𝑜 

𝑇. 0 =
𝜆

𝜆+𝐶𝐷+𝐼𝐷2  Transfer function or operator, 

By dividing the numerator and denominator by λ: 
𝜃𝑜

𝜃𝑖
=

1

1 +
𝐶
𝜆

𝐷 +
𝐼
𝜆

𝐷2
 

Which is analogous to the standard form of complex delay or lag, 
1

1 + 2𝜁𝜏𝐷 + 𝜏2𝐷2
 

∴ 2𝜁𝜏 =
𝐶

𝜆
 ،    2𝜁𝜏 =

600

2400
= 0.25 → (𝑖) 

𝜏2 =
𝐼

𝜆
=

150

2400
   ،   ∴ 𝜏 = √

150

2400
= 0.25 sec → (𝑖𝑖)   Also,              

Substituting the value of τ from equation (ii) into equation (i), 

2 × 0.25𝜁 = 0,25 

∴ 𝜁 =
0.25

0.5
= 0.5 

Since ζ<1, the frequency (vibration) is under damped. 

𝜃𝑜 = 𝜃𝑖 (1 + 𝑅𝑒
−𝜁𝑡

𝜏 cos(𝜔𝑑𝑡 − Ψ))    ، Step function response 

𝜃𝑜 =
𝜋

3
(1 −

1

√1 − 𝜁2
𝑒

−𝜁𝑡
𝜏 cos (

𝑡

𝜏
√1 − 𝜁2 − tan−1

𝜁

√1 − 𝜁2
)) 

𝜃𝑜 =
𝜋

3
(1 −

1

√1 − 0.52
𝑒(−0.5/0.25)𝑡 cos (

𝑡

0.25
√1 − 0.52 − tan−1

0.5

√1 − 0.52
)) 

∴ 𝜃𝑜 =
𝜋

3
[1 − 1.155𝑒−2𝑡 cos(3.46𝑡 − 0.58)] 

3.6 Typical Example of Ramp Input (refer to references [1] – [5]). 
A position control system that controls the angular displacement of the load by applying a torque 

directly proportional to the error (i.e. the difference between input and output). The moment of 

inertia of the load is 340 kgm2 and the damping coefficient is equal to 8000 N.m/(rad/s) when the 

input is 10 deg/s. The stable error or stabilizing error equals 0.25°, find: 

a] Control constant k. 

b] Damping ratio ζ. 

c] Damped natural frequency𝜔𝑑. 

d] Undamped natural frequency𝜔𝑛. 

The solution: 

Figure 6 below shows a position control system that controls the angular displacement of the load. 
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Figure 6: a Position Control System 
Equation of motion: 

𝑘(𝜃𝑖 − 𝜃𝑜) − 𝐶𝐷𝜃𝑜 = 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 − 𝑘𝜃𝑜 − 𝐶𝐷𝜃𝑜 = 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 = 𝑘𝜃𝑜 + 𝐶𝐷𝜃𝑜 +  𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 = 𝜃𝑜[𝑘 + 𝐶𝐷 + 𝐼𝐷2] 

𝑇. 0 =
𝜃𝑜

𝜃𝑖
=

𝑘

𝑘+𝐶𝐷+𝐼𝐷2  Transfer function or operator, 

Dividing the numerator and denominator by k, we get: 
𝜃𝑜

𝜃𝑖
=

1

1 +
𝐶
𝐾 𝐷 +

𝐼
𝐾 𝐷2

 

Which is analogous to the standard form of complex lag 1/ (1+2ζτD+τ2 D2). 

Problem given data: 

𝐶 = 8000𝑁.
𝑚

(
𝑟𝑎𝑑

𝑠
)

, 𝐼 = 340𝑘𝑔𝑚2  Coefficient of damping, 

ωi = 10°/s =
10° × π

180
= 0.1745rad/s 

∈ss= 0.25° = 0.25 ×
𝜋

180
= 0.00436𝑟𝑎𝑑   Steady state error, 

Response to ramp input: 

𝜃𝑖 = ω𝑡 

Steady state (P.I): 

𝐷𝜃𝑜 = ω 

𝐷2𝜃0 = 0 

𝜃𝑜 + 2ζτ𝐷𝜃𝑜 + 𝜏2𝐷2𝜃𝑜 = 𝜃𝑖 

ω𝑡 + 𝒬 + 2ζτω + 0 = ωt 
∴ 𝒬 = −2ζτω 

    𝜃𝑜 = ω𝑡 − 2ζτω    Steady state response, 

θ𝑖 = ω𝑡 

∈ss= θi − θo = ωt − ωt + 2ζτω = 0.0043  Steady state error, 
∈ss= 0.00436 = 2ζτω 

     𝑏𝑢𝑡, ω = 0.1745𝑟𝑎𝑑/𝑠 

∴ 0.00436 = 2ζτ × 0.1745 

∴ 2ζτ =
0.00436

0.1745
= 0.025 → (i) 

a] Control constant, k: 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘 =
𝐶

2ζτ
=

8000

0.025
= 320,000𝑁. 𝑚/𝑟𝑎𝑑 

= 320𝐾𝑁. 𝑚/𝑟𝑎𝑑 

b] Damping ratio, ζ: 

τ2 =
I

K
   ∴ τ = √

I

K
= √

340

320 × 103
= 0.0326𝑠/𝑟𝑎𝑑 

2ζ × 0.0326 =
8000

320 × 103
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∴ Damping ratio, ζ =
8000

2 × 0.0326 × 320 × 103
= 0.383 

c] Damped natural frequency, 𝜔d: 

Damped natural frequency, 𝜔d = ωn√1 − ζ2 

ωn =
1

τ
=

1

0.0326
= 30.7𝑟𝑎𝑑/𝑠 

∴ ωd = 30.7√1 − 0.3832 = 28.36 𝑟𝑎𝑑/𝑠 

d] Undamped natural frequency, 𝜔n: 
Undamped natural frequency, 𝜔n = 30.7 𝑟𝑎𝑑/𝑠 

3.7 Typical Example of Adding the First Differential Derivative of the Error ([1] – [6]) 

The base mass of the anti-aircraft gun is 7.5 mg and the radius of gyration around its axis of rotation 

is 0.76 m. A direct control device plus an error differential is used for the angular displacement of 

the gun from a distance. The damping coefficient around the cannon axis is 10.9 KN.m/(rad/s), 

when the cannon is moving at a maximum speed of 25 rev/min the lag angle should be no more 

than 2° and the damping ratio is 0.5, find: 

a] Proportional control constant and differential error control constant. 

b] The time of the cycle when applying a sudden input. 

c] The servo motor power when moving the load at maximum speed. 

The solution: 

𝑚 = 7.5 × 103 𝑘𝑔  
The radius of gyration motion or the radius of the moment of inertia, 

𝑘𝐺 = 0.76 𝑚 

𝐼 = 𝑚𝐾𝐺
2 = 7.5 × 103 × 0.762 = 4332𝑘𝑔𝑚2  Moment of inertia, 

  Damping coefficient around the gun axis, 𝐶 = 10.9 × 103𝑁.
𝑚

(
𝑟𝑎𝑑

𝑠
)
 

𝑀𝑎𝑥. 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛
𝑟𝑒𝑣

𝑚𝑖𝑛
, 𝑁𝑚𝑎𝑥 = 25𝑟𝑒𝑣/𝑚𝑖𝑛 

ωmax =
25×2π

60
= 2.618𝑟𝑎𝑑/𝑠   Max. Speed in rad/s, 

∈ss=
2°×𝜋

180
= 0.035𝑟𝑎𝑑    ، Steady-state error or stabilization error 

ζ = 0.5    ، Damping ratio 

a] the control constant k and the error differential control constant k1. 

Figure 7 below shows the proportional control constant for the base mass of an anti-aircraft gun 

without adding the first differential derivative of the error. 

 
Figure 7: the Proportional Control Constant for the Base Mass of an Anti-aircraft Gun without 

adding the First Differential Derivative of the Error 

Response to ramp input, 

θi = ω𝑡 

Steady State (P.I): 
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𝜃𝑜 = ω𝑡 + 𝒬 

Dθo = ω 

D2θo = 0 

Motion equation: 

𝑘(𝜃𝑖 − 𝜃𝑜) − 𝐶𝐷𝜃𝑜 = 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 − 𝑘𝜃𝑜 − 𝐶𝐷𝜃𝑜 = 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 = 𝑘𝜃𝑜 + 𝐶𝐷𝜃𝑜 + 𝐼𝐷2𝜃𝑜 

= 𝜃𝑜[𝑘 + 𝐶𝐷 + 𝐼𝐷2] 
𝜃𝑜

𝜃𝑖
=

𝑘

𝑘 + 𝐶𝐷 + 𝐼𝐷2
 

𝜃𝑜

𝜃𝑖
=

1

1 +
𝐶
𝐾 𝐷 +

𝐼
𝐾 𝐷2

 

Which is analogous to the standard formula for complex lag, 1/ (1+2ζτD+τ2 D2).  

𝜃𝑜 +
𝑐

𝑘
𝐷𝜃𝑜 +

1

𝑘
𝐷2𝜃𝑜 = 𝜃𝑖 

𝜔𝑡 + 𝒬 +
𝑐

𝑘
𝜔 +

𝐼

𝑘
× 0 = 𝜔𝑡 

ω𝑡 + 𝒬 +
𝑐

𝑘
𝜔 = 𝜔𝑡 

∴ 𝒬 = −
𝑐

𝑘
𝜔 

But, 𝜃𝑜 = ω𝑡 + 𝒬 

∴ 𝜃𝑂ω𝑡 −
𝑐

𝑘
𝜔 

θi = ω𝑡 

∈ss= 𝜃i − 𝜃𝑜   Steady state error, 

∈𝑆𝑆= ωt − (𝜔t −
c

k
ω) 

∴∈𝑆𝑆=  ω𝑡 − 𝜔𝑡 +
𝑐

𝑘
𝜔 =

𝑐

𝑘
𝜔 

In symmetry of the transfer function with the standard complex lag or delay form, 
𝑐

𝑘
= 2𝜁𝜏 → (𝑖) 

𝐼

𝑘
= 𝜏2 → (𝑖𝑖) 

As, ∈ss=
𝐶

K
ω → (𝑖𝑖𝑖) 

By substituting into equation (iii): 

0.035 =
10.9 × 103

𝑘
× 2.618 

∴ 𝑘 =
10.9 × 103 ×× 2.618

0.035
= 815320𝑁. 𝑚/𝑟𝑎𝑑 

= 815.32𝐾𝑁. 𝑚/𝑟𝑎𝑑 

From equation (ii): 
I

𝑘
= τ2        ،     

4332

815.32 × 103
= 𝜏2 

∴ τ = 0.0729𝑠𝑒𝑐/𝑟𝑎𝑑 

By adding the first differential derivative of the error, 

Motion equation: 

𝑘(∈ +𝑘1𝐷 ∈) = 𝐶𝐷𝜃𝑜 + 𝐼𝐷2𝜃𝑜 
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∈= θi − 𝜃𝑜 

𝑘[(𝜃𝑖 − 𝜃𝑜) + 𝑘1𝐷(𝜃𝑖 − 𝜃𝑜)] = 𝐶𝐷𝜃𝑜 + 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 − 𝑘𝜃𝑜 + 𝑘𝑘1𝐷𝜃𝑖 − 𝑘𝑘1𝐷𝜃𝑜 = 𝐶𝐷𝜃𝑜 + 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖 + 𝑘𝑘1𝐷𝜃𝑖 = 𝑘𝜃𝑜 + 𝑘𝑘1𝐷𝜃𝑜 + 𝐶𝐷𝜃𝑜 + 𝐼𝐷2𝜃𝑜 

𝑘𝜃𝑖(1 + 𝑘1𝐷) = 𝜃𝑜[𝑘 + 𝑘𝑘1𝐷 + 𝐶𝐷 + 𝐼𝐷2] 

𝑘𝜃𝑖(1 + 𝑘1𝐷) = 𝑘𝜃𝑜 [1 + 𝑘1𝐷 +
𝐶

𝐾
𝐷 +

𝐼

𝐾
𝐷2] 

𝑇. 0 =
𝜃𝑜

𝜃𝑖
=

1 + k1D

1 + (𝑘1 +
𝐶
𝐾) 𝐷 +

𝐼
𝐾 𝐷2

 

𝜃𝑜

𝜃𝑖
=

1 + k1D

1 + (
𝑘𝑘1 + 𝑐

𝑘
) 𝐷 +

𝐼
𝐾 𝐷2

   → (𝑖𝑣) 

Figure 8 below shows the control constant of the differential error when adding the first differential 

derivative of the error. 

 
Figure 8: the Control Constant of the Differential Error when adding the First Differential 

Derivative of the Error 

Which is analogous to the standard form: 
1

1 + 2ζτD + τ2D2
 

𝜃𝑜 + (
𝑘𝑘1 + 𝑐

𝑘
) 𝐷𝜃𝑜 +

𝐼

𝐾
𝐷2𝜃𝑜 = 𝜃𝑖 + 𝑘1𝐷𝜃𝑖 

Ramp input response: 

θi = ω𝑡 

𝐷θi = ω 

Steady State (P.I): 

𝜃𝑜 = ω𝑡 + 𝒬 

Dθo = ω 

D2θo = 0 

ω𝑡 + 𝒬 + (
𝑘𝑘1 + 𝑐

𝑘
) 𝜔 + 0 = 𝜔𝑡 + 𝑘1𝜔 

𝒬 = 𝑘1𝜔 − (
𝑘𝑘1 + 𝑐

𝑘
) 𝜔 = [𝑘1 − (

𝑘𝑘1 + 𝑐

𝑘
)] 𝜔 

𝜃𝑜 = ω𝑡 + [𝑘1 − (
𝑘𝑘1 + 𝑐

𝑘
)] ω 

𝜖𝑠𝑠 = 𝜃𝑖 − 𝜃𝑜 

𝜖𝑠𝑠 = ω𝑡 − 𝜔𝑡 − [𝑘1 − (
𝑘𝑘1 + 𝑐

𝑘
)] 𝜔 

𝜖𝑠𝑠 = − [𝑘1 − (
𝑘𝑘1 + 𝑐

𝑘
)] 𝜔 = [

𝑘𝑘1 + 𝑐

𝑘
− 𝑘1] 𝜔 

From equation (iv), 
𝑘𝑘1 + 𝑐

𝑘
= 2ζτ → (𝑣) 
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𝐼

𝐾
= 𝜏2 → (𝑣𝑖) 

From equation (v), 

815.32 × 103𝑘1 + 10.9 × 103

815.32 × 103
= 2 × 0.5 × 0.0729 

⇒∴ 𝑘1 = 0.0595𝑠𝑒𝑐 

b] Cycle time when receiving a sudden input: 

𝑡𝑝 =
2𝜋

𝜔𝑑
   ، Cycle time 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

=
1

𝜏
√1 − 𝜁2 

∴ 𝜔𝑑 =
1

0.0729
√1 − 0.52 = 11.88𝑟𝑎𝑑/𝑠 

∴ 𝑡𝑝 =
2𝜋

11.88
= 0.529𝑠𝑒𝑐 

c] Power of the servomotor when moving the load at maximum speed: 

𝑃 = 𝑇𝜔    ، Power 

𝑇 = 𝐶𝜔   ، Torque 

∴ 𝑃 = 𝐶𝜔2 = 10.9 × 103 × 2.6182 = 74707.8𝑊 

= 74.71𝐾𝑊 

4. Conclusions 

Complex lag elements are essential in system dynamics and control theory, combining lag and lead 

characteristics to analyze systems impacted by delays and phase shifts. This literature review 

examines their theoretical foundations, mathematical representations, and practical applications, 

especially in control systems and signal processing. Complex lag elements, which incorporate time 

delays and phase shifts, are represented using Laplace domain transfer functions. Researchers 

emphasize their importance for stability and control design. 

Mathematical modeling often employs techniques such as Padé approximations, frequency response 

analysis, and root locus techniques to optimize control strategies and enhance system stability in the 

presence of uncertainties. Empirical studies highlight their application across fields, including 

automotive and aerospace systems, where managing response time is critical for operational 

effectiveness and safety. 

However, challenges remain in accurately modeling time delays, particularly in nonlinear systems, 

and integrating these elements into decentralized control systems. Future research may focus on 

advanced machine learning methods to better predict behaviors in complex lag systems. 

Additionally, the text compares first-order and second-order systems, noting that second-order 

systems exhibit more complex dynamics, transient responses, and frequency behaviors, requiring 

advanced control techniques. Derivative Error Compensation is mentioned as a method to improve 

system performance by enhancing damping and reducing settling time, though it may also amplify 

measurement noise if not properly filtered. Overall, further exploration of complex lag elements is 

crucial for advancing technology in dynamic systems. 
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