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Abstract  

This paper presents a comprehensive introduction to convective heat transfer, a critical process in 

various engineering applications and natural phenomena. We begin by defining the fundamental 

concepts and terminology associated with convective heat transfer, delineating its significance in 

thermal management and fluid dynamics. Theoretical foundations, including the governing equations 

and boundary layer concepts, are discussed in detail. A mathematical analysis is performed to derive 

key relationships and principles governing convective heat transfer, including the role of convective 

heat transfer coefficients, Nusselt number, and Prandtl number. We also explore different regimes of 

convection, namely forced and natural convection, and their implications in practical scenarios. 

Through a combination of analytical methods and case studies, we illustrate the impact of various 

parameters on convective heat transfer rates. The findings underscore the importance of 

understanding convective processes for optimizing thermal systems in engineering designs. 

Keywords: Forced Convection; Dimensional Analysis; Reynolds's Analogy; Heat Exchanger 

Effectiveness; Natural Convection. 
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1. Overview 

Convection is a fundamental mode of heat transfer that occurs when a fluid, whether it be a liquid or 

a gas, undergoes movement due to temperature differences within the fluid or surrounding 

environment. This movement can be driven by a variety of factors, including the expansion and 

contraction of fluids, the displacement of denser fluids by less dense ones, and the application of 

external forces through mechanisms such as pumps or fans. 

In natural convection, the primary driving force behind fluid movement is the buoyancy effect, which 

is a direct result of the difference in density between hot and cold fluids. As a fluid heats up, its density 

decreases, causing it to rise through the surrounding environment. Conversely, as a fluid cools down, 

its density increases, causing it to sink. This natural process is responsible for various phenomena, 

such as the draft in a chimney or around any fire, where the movement of hot fluids creates a 

circulation of air that helps to dissipate heat. 

In addition to natural convection, forced convection also plays a significant role in many engineering 

applications. Forced convection involves the use of external mechanisms to create a flow of fluid, 

which can be driven by a variety of factors, including the rotation of a turbine, the movement of a 

pump, or the use of a fan. This type of convection is commonly seen in applications such as 

automotive engines, where a water pump creates a flow of coolant that is necessary for the efficient 

operation of the engine. 

The convection heat transfer mode is comprised of two primary mechanisms: diffusion and advection. 

Diffusion refers to the transfer of energy through the random motion of individual molecules, while 

advection refers to the transfer of energy through the bulk movement of the fluid. The combination 

of these two mechanisms results in a cumulative transport of energy, which is a fundamental aspect 

of convection. 

In many real-world applications, natural and forced convection occur simultaneously, a phenomenon 

known as mixed convection. This can be seen in applications such as solar central receivers or cooling 

of photovoltaic panels, where a combination of natural convection due to temperature gradients and 

forced convection due to external mechanisms, such as a fan, work together to enhance heat transfer. 

Convection can be further classified based on the type of flow involved. Internal flow refers to the 

movement of a fluid through a confined space, such as a pipe or a duct, while external flow refers to 

the movement of a fluid over a solid surface. Both internal and external flow can occur with either 

natural or forced convection, making it a complex and multifaceted mode of heat transfer. 

The classification of convection can also be made based on the smoothness and undulations of the 

solid surfaces involved. While a majority of the information on convection deals with smooth 

surfaces, many applications involve wavy or irregular surfaces, such as solar collectors or 

regenerative heat exchangers. These surfaces can significantly affect the flow and heat transfer 

characteristics of convection, making it essential to develop mathematical models that account for 

their presence. 

One way to visually demonstrate the principles of natural convection is through the use of a glass 

container filled with hot water and red food dye. When placed inside a fish tank with cold, clear water, 

the convection currents of the red liquid can be observed rising and falling in different regions, 

illustrating the process as heat gradients are dissipated. This experiment provides a simple and 

effective way to visualize the fundamental principles of convection and its role in heat transfer, [1], 

[2], [3], [4] and [5]. 

2. Forced Convection 

The study of forced convection is related to the transfer of heat between a moving fluid and a solid 

surface. In order to apply Newton's law of cooling given by equation(𝑄 = ℎ𝐴(𝑡𝑤 − 𝑡)), it is 

necessary to find a value for the heat transfer coefficient, ℎ. It has been mentioned that ℎ is given 

by 𝑘 𝛿⁄ ; Where 𝑘 is the thermal conductivity of the fluid and 𝛿 is the thickness of the fluid film on 

the surface. Therefore, the problem is to find a value for 𝛿 in terms of the fluid properties and fluid 

velocity. The thickness of the fluid film or slice 𝛿 depends on the type of fluid flow over the surface 



Excellence Journal for Engineering Sciences, Volume2, Issue 2, Feb  2025-ISSN 1858-9448 

 

 
56 

and this is governed by the Reynolds number, 𝑅𝑒. Below, Figure 1 illustrates the mechanism of heat 

transfer via forced convection. 

 
Figure 1: Forced Convection Heat Transfer Method 

The Reynolds number is a dimensionless group given by: 

𝑅𝑒 =
𝜌𝐶𝐿

𝜇
 𝑜𝑟 

𝐶𝐿

𝜈
 

(Where, 𝜌 = density of the fluid; 𝐶 = average velocity of the fluid; 𝐿 = characteristic linear dimension); 

𝜇 = dynamic viscosity of the fluid;  𝜈 = kinematic viscosity of the fluid, 𝜇 𝜌⁄ ). 

Various forms of forced convection such as flow in a pipe, flow through a pipe, and flow across a flat 

plate can be addressed mathematically by making specific assumptions about boundary conditions. 

While deriving an exact mathematical solution for these scenarios is quite challenging, particularly 

in cases involving turbulent flow, approximate solutions can be achieved by employing suitable 

assumptions.  

However, it is important to note that many heat transfer results are derived from experimental tests, 

and for numerous problems, no mathematical solutions exist; instead, experimental data takes 

precedence. This empirical data can be generalized using proper dimensional analysis [6] – [13]. 

3. Dimensional Analysis 

In order to apply dimensional analysis, it is necessary to know all the variables on which the required 

or desired function depends from experiment or experience. The results must be applied to 

geometrically similar objects, so one of the variables must always have a characteristic linear 

dimension. 

Consider a dimensional analysis of forced convection, assuming that free convection effects due to 

density differences are ignored. It was found that the heat transfer coefficient ℎ depends on the 

viscosity of the fluid 𝜇, the density of the fluid 𝜌, the thermal conductivity 𝑘, the specific heat of the 

fluid 𝑐, the temperature difference between the surface and the fluid 𝜃, and the speed of the fluid 𝐶. 

Thus, we get:  

ℎ = 𝑓(𝜇, 𝑃, 𝑘, 𝑐, 𝜃, 𝐶, 𝐿)     (1) 

(where 𝐿 is a characteristic linear dimension, and 𝑓 is a function) 

Equation (1) can be written as follows, 

ℎ = 𝐴 𝜇
𝑎1

𝜌
𝑏1

𝑘
𝑐1

𝑐
𝑑1

𝜃
𝑒1

𝐶
𝑓1

𝐿
𝑔1

+ 𝐵 𝜇
𝑎2

𝜌
𝑏2

𝑘
𝑐2

𝑐
𝑑2

𝜃
𝑒2

𝐶
𝑓2

𝐿
𝑔2

+ 𝑒𝑡𝑐     (2) 

(Where 𝐴 and 𝐵 are constants, and 𝑎1,  𝑏1,  𝑐1, 𝑑1, 𝑒𝑡𝑐. are arbitrary indices) 

Each element on the right side of the equation must have the same ℎ-dimensions. Considering the 

first element only, the following can be written: 

 ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝜇
𝑎1

𝜌
𝑏1

𝑘
𝑐1

𝑐
𝑑1

𝜃
𝑒1

𝐶
𝑓1

𝐿
𝑔1

 

Each of the properties in the above equation can be expressed in terms of the five basic dimensions: 

𝑚𝑎𝑠𝑠 𝑀, 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿, 𝑡𝑖𝑚𝑒 𝑇, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑡, 𝑎𝑛𝑑 ℎ𝑒𝑎𝑡 𝑄. 

𝐹𝑜𝑟 ℎ 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  
𝑊

𝑚2𝐾
 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 

𝑄

𝐿2𝑇𝑡
 

𝐹𝑜𝑟 𝜇 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  
𝑘𝑔

𝑚𝑠
 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 

𝑀

𝐿𝑇
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𝐹𝑜𝑟 𝑘 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  
𝑊

𝑚𝐾
 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 

𝑄

𝐿𝑇𝑡
 

𝐹𝑜𝑟 𝜌  𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  
𝑘𝑔

𝑚3
 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 

𝑀

𝐿3
 

𝐹𝑜𝑟 𝑐  𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  
𝑘𝑗

𝑘𝑔𝐾
 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 

𝑄

𝑀𝑡
 

𝐹𝑜𝑟 𝐿   𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑎𝑟𝑒  𝑚 ;  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝐿 
Therefore, by compensation: 

𝑄

𝐿2𝑇𝑡
= (

𝑀

𝐿𝑇
)

𝑎

(
𝑀

𝐿3
)

𝑏

(
𝑄

𝐿𝑇𝑡
)

𝑐

(
𝑄

𝑀𝑇
)

𝑑

(𝑡)𝑒 (
𝐿

𝑇
)

𝑓

(𝐿)𝑔 

By grouping similar terms, 
𝑄

𝐿2𝑇𝑡
= (𝜇)𝑎+𝑏−𝑑(𝐿)𝑓+𝑔−𝑎−3𝑏−𝑐(𝑇)−𝑎−𝑐−𝑓(𝑡)𝑒−𝑐−𝑑(𝑄)𝑐+𝑑 

For the dimensions of both sides of an equation to be the same, the exponent of each fundamental 

dimension must be the same on both sides of the equation. 

Therefore, by equalizing the exponents on both sides of the equation, we get: 

(i                                     ): 1 = 𝑐 + 𝑑 for Q 

(ii         ): −2 = 𝑓 + 𝑔 − 𝑎 − 3𝑏 − 𝑐 for L 

(iii                       ): −1 = −𝑎 − 𝑐 − 𝑓 for T 

(iv                           ): −1 = 𝑒 − 𝑐 − 𝑑 for t 

(v                           ): 0 = 𝑎 + 𝑏 − 𝑑 for M 

We now have five equations and seven unknown exponents; Therefore, a solution can only be 

obtained in terms of the semantics of two of the exponents. a, b, c, e and g are best expressed in terms 

of d and f. Therefore, it can be explained that: 

 𝑎 =  (𝑑 –  𝑓);  𝑏 =  𝑓;  𝑐 =  (1 –  𝑑);  𝑒 =  0;  𝑔 =  (𝑓 –  1)   
Substituting these values into equation (2), we get: 

ℎ = 𝐴 𝜇
(𝑑1−𝑓1)

𝜌
𝑏1

𝑘
(1−𝑑1)

𝑐
𝑑1

𝜃
0

𝐶
𝑓1

𝐿
(𝑓1−1)

+ 𝐵 𝜇
𝑎2

𝜌
(𝑑2−𝑓2)

𝑘
(1−𝑑2)

𝑐
𝑑2

𝜃
𝑒2

𝐶
𝑓2

𝐿
(𝑓2−1)

+ 𝑒𝑡𝑐 

𝑖. 𝑒.  ℎ = 𝐴
𝑘

𝐿
(

𝑐𝜇

𝑘
)

𝑑1

(
𝜌𝐶𝐿

𝜇
)

𝑓1

+ 𝐵
𝑘

𝐿
(

𝑐𝜇

𝑘
)

𝑑2

(
𝜌𝐶𝐿

𝜇
)

𝑓2

+ 𝑒𝑡𝑐 

Therefore, it can be observed that, 
ℎ𝐿

𝑘
= 𝐾𝐹 {(

𝑐𝜇

𝑘
) ؛ (

𝜌𝐶𝐿

𝜇
)} 

 (Where 𝐾 is a constant and 𝐹 is a function). The dimensionless group, ℎ𝐿/𝑘, is called the Nusselt 

number 𝑁𝑢; The dimensionless group, 𝑐𝜇/𝑘, is called the Prandtl number, 𝑃𝑟; The dimensionless 

group, 𝜌𝐶𝐿/𝜇, is the Reynolds number Re. 

𝑁𝑢 = 𝐾𝐹{𝑃𝑟, 𝑅𝑒}     (3) 

Experiments are conducted to calculate 𝐾 and determine the nature of the function 𝐹. 

When evaluating 𝑁𝑢, 𝑃𝑟, 𝑎𝑛𝑑 𝑅𝑒, it is necessary to consider the properties of the fluid at an 

appropriate average temperature, since the properties change with temperature change. For cases 

where the temperature of most of the fluid is not significantly different from the temperature of the 

solid surface, therefore, the properties of the fluid are evaluated at an average temperature (i.e.  Mean 

bulk temperature). 

When the temperature difference is large, errors arise due to using the average temperature of most 

of the fluid. To solve this problem, the mean film temperature is sometimes used, which is defined 

as: 

𝑡𝑓 =
𝑡𝑏 + 𝑡𝑤

2
     (4) 

(where 𝑡𝑏 is the temperature of the bulk of the fluid, and 𝑡𝑤 is the surface temperature) 
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When using an empirical equation, it is important to know at what reference temperature the 

properties are being evaluated by the person performing the test. It should be noted that the Prandtl 

number, 𝑃𝑟 = 𝑐𝜇/𝑘; It is all composed of properties of a fluid and is itself a property. 

For laminar flow in a pipe an exact mathematical solution is found, this gives 𝑁𝑢 =  3.65. It can be 

seen that, since 𝑁𝑢 =  ℎ𝑑/𝑘 =  3.65; The heat transfer coefficient, ℎ, for any pipe depends only on 

the thermal conductivity of the fluid. 

In the previous dimensional analysis, five basic dimensions were chosen: 

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑄, 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿, 𝑡𝑖𝑚𝑒 𝑇, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑡, 𝑎𝑛𝑑 𝑚𝑎𝑠𝑠 𝑀. 
Units of work or energy are generally given by: 

(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×  𝑚𝑎𝑠𝑠 ×  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)  =  (𝑓𝑜𝑟𝑐𝑒 ×  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)  =  𝑒𝑛𝑒𝑟𝑔𝑦 
𝐹𝑆 = 𝑚𝑎𝑆 

= 𝑀
𝐿

𝑇2
𝐿 =

𝑀𝐿2

𝑇2
 

Since heat is a form of energy and is a derivative dimension of the fundamental dimensions, it can be 

seen that there is no need to choose heat as one of the fundamental dimensions. If Q is eliminated, 

and the temperature dimensions are replaced by 
𝑀𝐿2

𝑇2 , then four dimensionless groups are obtained, 

whenever this happens. 

𝑁𝑢 = 𝐾𝐹 {𝑃𝑟, 𝑅𝑒,
𝐶2

𝑐𝜃
  } 

Now, if the group 
𝐶2

𝑐𝜃
 is divided by (𝛾 –  1), which is a constant for any gas, and if 𝜃 is replaced by the 

absolute temperature of most of the gas, 𝑇 then we get, 

𝐶2

𝑐𝑇(𝛾 − 1)
=

𝐶2

𝛾𝑅𝑇
=

𝐶2

𝑎2
= (𝑀𝑎)2 

(Where 𝑎 is the speed of sound in the gas and 𝑀𝑎 is the Mach Number) 

Subsequently, 

𝑁𝑢 = 𝐾𝐹{𝑃𝑟, 𝑅𝑒, (𝑀𝑎)2} 

The effect of the Mach number, 𝑀𝑎, on heat transfer can be ignored in most problems. However, for 

high-speed flow, large amounts of kinetic energy (i.e. velocity) are lost by friction in the wall layer 

near the surface and so the Mach number becomes an important variable [10],[14], [15] and [16]. 

4. Reynolds's Analogy 

Reynolds assumes that the transfer of heat from a solid surface is similar to the transfer of momentum 

of a fluid from the surface, and therefore it is possible to express the transfer of heat in terms of 

frictional resistance to flow. 

Consider a turbulent flow: 

It can be assumed that particles of mass, 𝑚, transfer heat and momentum to and from the surface by 

moving perpendicular to the surface. Therefore, as an average, 𝑞 = �̇�𝑐𝜃 , is the heat transferred per 

unit area (where 𝑐 = specific heat of the fluid, 𝜃 = temperature difference between the surface and 

most of the fluid). 

Also, the rate of change in momentum through the flow is given by: 

�̇�(𝐶 − 𝐶𝑤) = �̇�𝐶 

(Where 𝐶 = velocity of most of the fluid; 𝐶𝑤 = velocity of fluid at surface =  0) 

Hence, force per unit area, 𝜏𝑤 = �̇�𝐶, (where 𝜏𝑤 is the shear stress in the fluid at the wall) 

By unifying the equations for heat flow and momentum transfer, therefore, 

�̇� =
𝑞

𝑐𝜃
=

𝜏𝑤

𝐶
 

𝑜𝑟 𝑞 =
𝜏𝑤𝑐𝜃

𝐶
      (6) 
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In practice, for turbulent flow there is always a thin layer of fluid at the surface in which viscous 

effects prevail. This thin layer is known as the laminate sub-layer. In this layer, heat is transferred 

only by conduction. 

Therefore, from Fourier's law for a unit area, 

𝑞 = −𝑘 (
𝑑𝜃

𝑑𝑦
)

𝑦=0

 

(Where 𝑘 = thermal conductivity of the fluid; 𝑦 = distance from the surface perpendicular to the 

surface). 

Also, for viscous flow: 

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜏 = 𝜇 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

Therefore, the shear stress at the wall is given by: 

𝜏𝑤 = 𝜇 (
𝑑𝐶

𝑑𝑦
)

𝑦=0

 

(Where, 𝜇 = fluid viscosity; 𝐶 = fluid velocity). 

Now, since the laminated substrate is very thin it can be assumed that the temperature and velocity 

change linearly with distance from the wall, 𝑦, 

𝑖. 𝑒. 𝑞 = −
𝑘𝜃

𝛿𝑏
،𝜏𝑤 =

𝜇𝐶

𝛿𝑏
 

(where 𝛿𝑏is the thickness of the laminated substrate) 

By avoiding 𝛿𝑏, and ignoring the negative sign, we get, 
𝑞

𝑘𝜃
=

𝜏𝑤

𝜇𝐶
 

𝑖. 𝑒. 𝑞 =
𝜏𝑤𝑘𝜃

𝜇𝐶
 

It can be noted that this equation is identical to equation (6) when, 

i.e.   When 
𝐶𝜇

𝑘
= 1 or 𝑃𝑟 =  1 

Therefore, for fluids in which the Prandtl number (𝑃𝑟) is approximately unity, Simple Reynolds's 

Analogy can be applied, since the heat transferred through the laminar substrate can be considered to 

have a similar behavior to the heat transferred from the sub-layer to most of the fluid. For most gases, 

dry steam, and superheated steam, the Prandtl number 𝑃𝑟 lies between 0.65 and 1.2. 

For unit surface area, 𝑞 =  ℎ 𝜃, so by substituting into equation (6) we get, 
ℎ

𝑐
=

𝜏𝑤

𝐶
 

Dividing both sides of the equation by 𝜌𝐶 (where ρ is the average density of water) we get, 

 

𝑖. 𝑒. 𝑆𝑡 =
ℎ

𝜌𝐶𝑐
     (7) 

The dimensionless friction factor, 𝑓 is defined by: 

𝑓 =
𝜏𝑤

(
𝜌𝐶2

2 )
     (8) 

So, we have for Reynolds analogy, 

𝑆𝑡 =
𝑓

2
     (9) 

Stanton's number, 𝑆𝑡, can be written as: 

𝑆𝑡 =
ℎ

𝜌𝐶𝑐
=

ℎ𝐿

𝑘
×

𝜇

𝜌𝐶𝐿
×

𝑘

𝑐𝜇
=

𝑁𝑢

𝑅𝑒 𝑃𝑟
 

𝑖. 𝑒.  𝑆𝑡 =
𝑁𝑢

𝑅𝑒 𝑃𝑟
     (10) 
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The friction factor, 𝑓, can be derived mathematically for some cases, but in others a laboratory 

determination is necessary. 

For turbulent flow in a pipe, a simple measurement of the pressure drop gives 𝑓, and thus the 

approximate heat flow can be found using Equation (6) or Equation (9); 

For flow in a pipe with diameter 𝑑, the resistance to flow over a unit length is given by: 

 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝜏𝑤𝜋𝑑 = 𝛥𝑃
𝜋

4
𝑑2 

(Where 𝛥𝑃 = pressure drop per unit length). 

∴ 𝜏𝑤 =
𝛥𝑃𝑑

4
     (11) 

An important factor in heat exchanger design is the pumping power required. Pumping power is the 

rate at which work is done to overcome frictional resistance.  

i.e. For flow in a pipe; 

Pumping capacity per unit length, 

  𝑊 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×  𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  
𝑤 = 𝜏𝑤𝜋𝑑𝐶   

ℎ𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎, 𝑞 =
𝜏𝑤𝑐𝜃

𝐶
 

 ℎ𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑄 =
𝜏𝑤𝑐𝜃𝜋𝑑

𝐶
 

Therefore, the ratio of the pumping power, 𝑊, to the heat flow, 𝑄, can be expressed as: 

𝑊

𝑄
=

𝜏𝑤𝜋𝑑𝐶2

𝜏𝑤𝑐𝜃𝜋𝑑
=

𝐶2

𝑐𝜃
     (12) 

For a heat exchanger, 𝜃 is the average logarithmic temperature difference. 

It can be seen from Equation (12) that the power required for a given heat transfer rate can be reduced 

by reducing the flow velocity, 𝐶. However, reducing the fluid velocity means that the required surface 

area must be increased, and therefore a compromise must be made between the fluid velocity and the 

surface velocity.  

Figure 2 below shows Simple Reynolds's Analogy. 

 
Figure 2: Simple Reynolds's Analogy 

Various modifications have been made to the simple Reynolds analogy in an attempt to obtain an 

equation that will give a solution for turbulent heat transfer over a wide range of Prandtl numbers. 

(For a very viscous oil the Prandtl number is in the order of thousands, while for liquid minerals it is 

very low as 0.01). Equations based on modern theories of turbulent flow give the Stanton number as 

a function of the Reynolds number, the Prandtl number and the friction factor. In general, these 

equations can be reduced to 𝑆𝑡 =  𝑓/2, when the Prandtl number is set equal to unity. 

There are two additional points to mention here: 

i. When the temperature difference between the surface and most of the fluid is very large, the 

property changes become large enough to be taken into account. Therefore, it is not long enough to 

use the mean film temperature to evaluate the properties, as given by equation (4). The change of 

each property with temperature through the flow must be known. Sometimes, with sufficient 

accuracy, an equation in the following form is used, 

𝑁𝑢 = 𝐾𝜙 {𝑃𝑟, 𝑅𝑒,
𝑇𝑆

𝑇𝑤
} 
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(Where 𝑇𝑆and 𝑇𝑤 are the absolute temperatures at the pipe axis and at the pipe wall, respectively, and 

the fluid properties are taken at the mean film temperature) 

ℎ =
1

𝑅𝐴
𝑅؛     =

1

ℎ𝐴
 

ii. Equations for flow in a pipe usually do not take into consideration the effects of the entry length. 

At the entrance to a heated tube, hydro-dynamic and thermal boundary layers begin to form on the 

wall, and their thickness gradually increases until the flow becomes fully developed. In this initial 

region of the pipe, the heat transfer coefficient is much greater since the resistance to heat flow in the 

wall layer is less, and therefore an equation that ignores this effect will give a low value for the heat 

transfer that is calculated. This effect is more noticeable for laminar flow than turbulent flow, and is 

more important for fluids with high Prandtl numbers Pr. In most heat exchange procedures, the flow 

is turbulent and the length of the tube is long enough to make the effect of inlet length small enough 

to be ignored. In the case of oil coolers, the flow is laminar and the Prandtl number is high, so inlet 

effects can be noticeable. When flow through a flat plate is considered, the characteristic length 

dimension is taken as the distance from the leading edge. The heat transfer coefficient obtained is 

therefore the local value at that section of the plate. The average value of the heat transfer coefficient 

over the entire plate is the value used to calculate the heat transfer to or from the plate. It can be seen 

that the average heat transfer rate for a hot plate with a length L is twice the local heat transfer 

coefficient at a distance L from the leading edge [10], and [17] – [23]. 

5. Heat Exchanger Effectiveness 

In certain cases of heat exchanger design, the efficiency of the heat transfer procedure becomes very 

important; As an example of compact heat exchangers, especially in aircraft manufacturing where 

weight is important, a Nusselt method later developed by Kays and London will be discussed in this 

section. 

The effectiveness, ∈ of a heat exchanger is defined as the ratio of the actual heat transferred to the 

maximum possible heat transferred. 

For any heat exchanger with mass flow rates of hot and cold fluids �̇�𝐻 and �̇�𝐶 and specific heats 𝑐𝐻 

and 𝑐𝐶, let the total temperature changes for each fluid be 𝛥𝑡𝐻 and 𝛥𝑡𝐶. 

Ignoring losses to the surrounding environment, 

𝑄 = �̇�𝐻𝑐𝐻𝛥𝑡𝐻 = �̇�𝐶𝑐𝐶𝛥𝑡𝐶 
𝑜𝑟 𝑄 = 𝐶𝐻𝛥𝑡𝐻 = 𝐶𝐶𝛥𝑡𝐶      (13) 

(Where 𝐶𝐻 = �̇�𝐻𝑐𝐻 and 𝐶𝐶 = �̇�𝐶𝑐𝐶  are the thermal capacities of hot and cold fluids). 

From equation (13), it can be seen that a fluid with a smaller capacity, 𝐶, has a larger temperature 

change, 𝛥𝑡. The maximum possible temperature change for a fluid is (𝑡𝐻𝑚𝑎𝑥 − 𝑡𝐶𝑚𝑖𝑛), and this ideal 

temperature change can only be achieved with a fluid with a low heat capacity. 

𝑖. 𝑒.   𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, 𝜖 =
𝑄

𝐶𝑚𝑖𝑛(𝑡𝐻𝑚𝑎𝑥
− 𝑡𝐶𝑚𝑖𝑛

)
=

𝑎𝑐𝑡𝑢𝑎𝑙 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑
    (14) 

The goal of a good heat exchanger design is to obtain the maximum possible fluid temperature change 

for a given driving force, that is, for a log mean temperature difference, LMTD. Therefore, a useful 

measure of heat exchanger efficiency is the number of heat transfer units, NTU, which is defined as: 

𝑁𝑇𝑈 =
(∆𝑡)𝑚𝑎𝑥 

𝐿𝑀𝑇𝐷
 

Where: (∆𝑡)𝑚𝑎𝑥 is the maximum temperature change of one of the fluids. 

now, 

𝑄 = 𝑈𝐴 𝐿𝑀𝑇𝐷 = 𝐶𝑚𝑖𝑛 (∆𝑡)𝑚𝑎𝑥 

∴ 𝑁𝑇𝑈 =
(∆𝑡)𝑚𝑎𝑥 

𝐿𝑀𝑇𝐷
=

𝑈𝐴

𝐶𝑚𝑖𝑛
     (15) 

The greater the number of heat transfer units, the greater the effectiveness of the heat exchanger.  

The ratio of minimum to maximum heat capacity is usually given by the symbol R, 

𝑅 = 𝐶𝑚𝑖𝑛 𝐶𝑚𝑎𝑥⁄      (16) 

Note that R can vary between 1 (when both fluids have the same heat capacity) and 0 (when one fluid 

has infinite thermal capacity, e.g. condensed vapor or boiling liquid). 
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Figure 3 below shows a typical example of an effectiveness plot, ∈, against 𝑁𝑇𝑈 for varying values 

of the heat capacity ratio, 𝑅. 

 
Figure 3: Plot of Effectiveness against the Number of Heat Transfer Units 

Consider a counter flow Heat exchanger as shown in Figures 4 and 5 below. 

 
Figure 4: Counter Flow Heat Exchanger 

 
Figure 5: Temperature versus Distance Plot for a Counter – Flow Heat Exchanger 

From Figure 5, it can be seen that, 𝐶𝑐  =  𝐶𝑚𝑖𝑛 since 𝛥𝑡𝐶 > 𝛥𝑡𝐻 

𝑅 = 𝐶𝑚𝑖𝑛 𝐶𝑚𝑎𝑥⁄  = 𝐶𝐶 𝐶𝐻⁄  
 

Or using equation (13), 
𝐶𝐶

𝐶𝐻
=

𝛥𝑡𝐻

𝛥𝑡𝐶
 

The following equation could be obtained, 

𝑅 =
𝑡𝐻1

− 𝑡𝐻2

𝑡𝐶1
− 𝑡𝐶2

     (17) 

From equation (14), 

∈=
𝑄

𝐶 (𝑡𝐶𝑚𝑖𝑛𝐻𝑚𝑎𝑥
)

𝐶(𝑡𝐶1
− 𝑡𝐶2

)
𝑚𝑖𝑛

𝐶(𝑡𝐻1
− 𝑡𝐶2

)
𝑚𝑖𝑛

=
𝑡𝐶1

− 𝑡𝐶2

𝑡𝐻1
− 𝑡𝐶2 𝑚𝑖𝑛
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𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, 𝜖 =
𝑄

𝐶𝑚𝑖𝑛(𝑡𝐻𝑚𝑎𝑥
− 𝑡𝐶𝑚𝑖𝑛

)
=

𝐶𝑚𝑖𝑛(𝑡𝐶1
− 𝑡𝐶2

)

𝐶𝑚𝑖𝑛(𝑡𝐻1
− 𝑡𝐶2

)
=

(𝑡𝐶1
− 𝑡𝐶2

)

(𝑡𝐻1
− 𝑡𝐶2

)
     (18) 

 

From equation (15), 

𝑁𝑇𝑈 =
𝑈𝐴

𝐶𝑚𝑖𝑛
=

𝑡𝐶1−𝑡𝐶2  

𝐿𝑀𝑇𝐷
      

From the equation of logarithmic mean temperature difference shown below, 

𝐿𝑀𝑇𝐷 =
(𝑡𝐻1

− 𝑡𝐶1
) − (𝑡𝐻2

− 𝑡𝐶2
)

𝑙𝑜𝑔𝑒

(𝑡𝐻1
− 𝑡𝐶1

)

(𝑡𝐻2
− 𝑡𝐶2

)

 

∴ 𝑁𝑇𝑈 =
(𝑡𝐶1

− 𝑡𝐶2
)

(𝑡𝐻1
− 𝑡𝐶1

) − (𝑡𝐻2
− 𝑡𝐶2

)
𝑙𝑜𝑔𝑒

(𝑡𝐻1
− 𝑡𝐶1

)

(𝑡𝐻2
− 𝑡𝐶2

)
 

𝑜𝑟 𝑁𝑇𝑈 =
(𝑡𝐻1

− 𝑡𝐻2
)(𝑡𝐶1

− 𝑡𝐶2
)

(𝑡𝐶1
− 𝑡𝐶2

)
= 𝑙𝑜𝑔𝑒 {

(𝑡𝐻1
− 𝑡𝐶2

) − (𝑡𝐶1
− 𝑡𝐶2

)

(𝑡𝐻1
− 𝑡𝐶2

) − (𝑡𝐻1
− 𝑡𝐻2

)
} 

∴ 𝑁𝑇𝑈(𝑅 − 1) = 𝑙𝑜𝑔𝑒 {
[(𝑡𝐶1

− 𝑡𝐶2
)/∈] − (𝑡𝐶1

− 𝑡𝐶2
)

[(𝑡𝐶1
− 𝑡𝐶2

)/∈] − 𝑅(𝑡𝐶1
− 𝑡𝐶2

)
} 

Using equations (17) and (18), 

𝑁𝑇𝑈(𝑅 − 1) = 𝑙𝑜𝑔𝑒

(1−∈)

(1 − 𝑅 ∈)
 

𝑜𝑟 ∈=
1 − 𝑒−𝑁𝑇𝑈(1−𝑅)

1 − 𝑅𝑒−𝑁𝑇𝑈(1−𝑅)
     (19) 

For a counterflow heat exchanger when 𝐶𝐻  =  𝐶𝐶, i.e. R = 1 (say a gas turbine heat exchanger), so 

the expression for efficiency cannot be obtained by substituting R = 1 into equation (19). For this 

case, the temperature change for each fluid is the same, since 𝐶𝐻  =  𝐶𝐶, so the LMTD is equal to the 

temperature difference between the hot and cold fluids, which remains constant throughout the heat 

exchanger. Therefore, the equation is written as 𝑁𝑇𝑈 =
(𝑡𝐶1−𝑡𝐶2)

(𝑡𝐻1−𝑡𝐻2)
 and thus the derivation follows as 

above, giving [10], and [24] – [28]: 

∈=
𝑁𝑇𝑈

1+𝑁𝑇𝑈
     (20) 

For a parallel-flow heat exchanger, it can be explained that: 

∈=
1 − 𝑒−𝑁𝑇𝑈(1+𝑅)

1 + 𝑅
     (21) 

When R = 0, i.e. In the case of a condenser, it can be observed from Equation (19) or Equation (21) 

that the effectiveness is, 

∈= 1 − 𝑒−𝑁𝑇𝑈     (22) 

6. Natural Convection 

As mentioned previously, heat transfer by free or natural convection is the result of differences in 

density with respect to the fluid, causing a natural circulation, and thus heat transfer. For most 

problems in which a fluid flows across a surface, the superimpose effect of natural convection is small 

enough to be ignored. When there is no forced fluid velocity, heat is transferred entirely by natural 

convection (when radiation is ignored). Transmission in this case depends on the coefficient of 

cubical expansion, 𝛽, which is given by: 

𝜌1 = 𝜌2(1 + 𝛽𝜃) 𝑜𝑟 (𝜌1 − 𝜌2) = 𝜌2𝛽𝜃 

(Where 𝜃 is the temperature difference between the two parts of the fluid with densities 𝜌1 and 𝜌2). 

The upward compression force per unit volume of fluid is up thrust per unit volume, and the speed of 

the load current is dependent on the upward compression. Natural convection depends on the heat 

transfer coefficient, which in turn depends on the viscosity of the fluid and the thermal conductivity 

of the material, over a distinct length. 
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Since the cubic expansion coefficient 𝛽 and the local acceleration due to gravitation 𝑔 do not have a 

separate effect on heat transfer, only their product 𝛽𝑔 should be considered. 

For dimensional analysis we get, 

ℎ = 𝐴 𝜇
𝑎1

𝜌
𝑏1

𝑘
𝑐1

𝑐
𝑑1

𝜃
𝑒1

(𝛽𝑔)
𝑓1

𝐿
𝑔1

+ 𝐵 𝜇
𝑎2

𝜌
𝑏2

𝑘
𝑐2

𝑐
𝑑2

𝜃
𝑒2

(𝛽𝑔)
𝑓2

𝐿
𝑔2

+ 𝑒𝑡𝑐 

Therefore, by the same steps as in forced convection it can be shown that: 

𝑁𝑢 = 𝐾𝐹 [
𝑐𝜇

𝑘
،

𝛽𝑔𝜌2𝐿3𝜃

𝜇2
] 

𝑜𝑟    𝑁𝑢 = 𝐾𝐹{𝑃𝑟, 𝐺𝑟} 

Where: 𝐺𝑟 =
𝛽𝑔𝜌2𝐿3𝜃

𝜇2 =
𝛽𝑔𝐿3𝜃

𝜈2  is called the Grashof Number. 

In many cases of natural convection, it is possible to use an approximate equation to evaluate the heat 

transfer coefficient ℎ. 

For example, for a natural convection from a horizontal pipe, 

𝑤ℎ𝑒𝑛 104 < 𝐺𝑟 < 109 , ℎ = 1.32 (
𝜃

𝑑
)

1/4

 

𝑤ℎ𝑒𝑛 109 < 𝐺𝑟 < 1012 , ℎ = 1.25𝜃1/3 

(Where ℎ 𝑖𝑠 𝑖𝑛 𝑊/𝑚2𝐾, 𝜃 𝑖𝑠 𝑖𝑛 𝐾, 𝑑 𝑖𝑠 𝑖𝑛 𝑚). 

Figure 6 below shows heat transfer by natural convection. 

 
Figure 6: Heat Transfer by Natural Convection 

For a natural convection from a vertical wall, the air, as it rises as a result of convection currents, 

forms a wall layer, starting from the bottom and gradually thickening at the top of the wall. The figure 

below (Figure 7) shows the behavior of wall layer formation on a vertical wall. 

The heat transfer coefficient changes at the top of the wall. The formulas for heat transfer from a 

vertical wall give a local heat transfer coefficient at a distance, 𝐿, from the bottom of the wall, where 

the characteristic linear dimension used in the Grashof number is the length, 𝐿. 
It can be clarified that the average value of the heat transfer coefficient from the bottom upwards for 

the distance 𝐿 is given by: 

ℎ𝑎𝑣 =
3

4
ℎ 

 
Figure 7: The Behavior of Wall Layer Formation on a Vertical Wall 

(Where ℎ𝑎𝑣 is the average heat transfer coefficient, and ℎ is the heat transfer coefficient at the section 

that is L away from the bottom of the wall) [10], [29] and [30]. 
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7. Conclusion 

Convection refers to the method of energy transfer between a solid surface and the nearby liquid or 

gas that is in motion. This process involves both conduction and fluid movement. The rate of 

convective heat transfer increases with the speed of the fluid. When there is no significant fluid 

movement, heat is transferred solely through conduction. However, when the fluid is in motion, it 

enhances the heat transfer between the solid surface and the fluid, adding complexity to the 

assessment of heat transfer rates. 

The convective heat transfer process plays a crucial role in numerous practical applications, including 

porous insulations, the cooling of rotating electric windings, geothermal reservoirs, irrigation 

systems, heat exchangers, and the exploration of oil and gas fields. 
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